Nerve terminal withdrawal is accompanied by a loss of acetylcholine receptors (AChRs) at corresponding postsynaptic sites during the process of synapse elimination at developing and reinnervated adult (Rich and Lichtman, 1989a) neuromuscular junctions. Aside from AChR and nerve terminal loss, however, the molecular and cellular alterations that occur at sites of elimination are unknown. To gain a better understanding of the cascade of events that leads to the disassembly of synaptic sites during the synapse elimination process, we surveyed the distribution of molecular elements of the postsynaptic specialization, the basal lamina, and supporting Schwann cells during the process of synapse elimination that occurs after reinnervation. In addition, quantitative techniques were used to determine the temporal order of disappearance of molecules that were lost relative to the loss of postsynaptic AChRs. We found that the dismantling of the postsynaptic specialization was inhomogeneous, with evidence of rapid dissolution of some aspects of the postsynaptic apparatus and slower loss of others. We also observed a loss of Schwann cell processes from sites of synapse elimination, with a time course similar to that seen for nerve terminal retraction. In contrast, all of the extracellular markers that we examined were lost slowly from sites of synapse loss. We therefore conclude that the synapse elimination process is synapse-wide, removing not only nerve terminals but also Schwann cells and many aspects of the postsynaptic apparatus. The disassembly occurs in a stereotyped sequence with some synaptic elements appearing much more stable than others.
We have been studying the mechanisms whereby pools of motor neurons establish a rostrocaudal bias in the position of their synapses in some skeletal muscles. The serratus anterior (SA) muscle of the rat displays a rostrocaudal topographic map before birth, and the topography is re-established after denervation. In this report, we explore the potential role of synaptic competition between innervating axons as a means of generating topographic specificity. We followed the progress of the reformation of this map in neonatal animals under conditions that enhanced the likelihood of observing synaptic competition. This was accomplished by forcing caudal axons to regenerate ahead of rostral axons onto a surgically reduced SA muscle. In this way, caudal (C7) motor neurons had unopposed access to vacated synaptic sites on the remaining rostral half of the SA before the return of the rostral (C6) axons. Intracellular recording revealed that 2 d after the second denervation, most of the reinnervated end plates contained only axons from the C7 branch; the remaining reinnervated end plates received input from C6 only or were multiply innervated by C6 and C7 axons. After 6 d, the pattern was reversed, with most end plates innervated exclusively by C6. After 17 d, axons from C6 were the sole input to reinnervated end plates. During the transition from C7- to C6-dominated input, at end plates coinnervated by C6 and C7 axons, the average quantal content from C6 was the same as that from C7; after 7 d, the quantal content of C6 was greater than that of C7. We have thus developed an experimental situation in which the outcome of synaptic competition is predictable and can be influenced by the positional labels associated with axons from different levels in the spinal cord.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.