BackgroundObesity in infancy and adolescence has acquired epidemic dimensions worldwide and is considered a risk factor for a number of disorders that can manifest at an early age, such as Metabolic Syndrome (MS). In this study, we evaluated overweight, obese, and extremely obese adolescents for the presence of MS, and studied the prevalence of single factors of the syndrome in this population.MethodsA total of 321 adolescents (174 females and 147 males) aged 10 to 16 years, attending the Adolescent Outpatient Clinic of Botucatu School of Medicine, Brazil, between April 2009 and April 2011 were enrolled in this study. Adolescents underwent anthropometric evaluation (weight, height, and abdominal circumference) and Body Mass Index (BMI) was estimated according to age and gender, following Disease Control and Prevention Centers recommendations (CDC, 2000). Blood pressure was measured and individuals with BMI ≥ 85th percentile were submitted to laboratory evaluation for Total Cholesterol, HDL and LDL Cholesterol, Triglycerides, Fasting Insulinemia, and Fasting Glycemia to identify MS factors, according to the criteria suggested by the International Diabetes Federation. Insulin resistance was calculated by HOMA-IR, Quicki, and Fasting Glycemia/Fasting Insulinemia (FGI).Results and discussionOf the 321 adolescents, 95 (29.6%) were overweight, 129 (40.2%) were obese, and 97 (30.2%) were extremely obese. Around 18% were diagnosed with MS. The most prevalent risk factors were abdominal circumference ≥90th percentile (55%), HDL < 40 mg/dL (35.5%), High Pressure ≥130/85 mm/Hg (21%), Triglycerides ≥150 mg/dL (18.5%), and Fasting Glycemia ≥100 mg/dL (2%). Insulin resistance was observed in 65% of the adolescents.ConclusionAn increased prevalence of overweight and obesity, together with cardiometabolic risk factors such as dyslipidemia and abnormal blood pressure, were observed in adolescents, contributing to the onset of metabolic syndrome at younger ages. Risk factors for MS were more prevalent in females.
Bone turnover is affected by exercise throughout the lifespan, especially during childhood and adolescence. The objective of this study was to investigate the impact of different sports on total and regional bone mineral density in male Brazilian adolescent athletes. Forty-six adolescents aged 10-18 years participated in the study: 12 swimmers, 10 tennis players, 10 soccer players, and 14 sedentary individuals. The athletes had engaged in physical activities for more than 10 h per week in the previous 6 months. Bone mineral density of the lumbar spine (L1-L4), left proximal femur region, and whole body was evaluated by dual-energy X-ray absorptiometry. Results showed higher mean values in the proximal femur region of tennis and soccer players (1.02 ± 0.18; 0.96 ± 0.16, respectively) than swimmers and controls (0.91 ± 0.14 and 0.87 ± 0.06, respectively) (P < 0.05). In relation to the impact of sporting activities based on bone age determination, we observed significant differences in bone mineral density at all evaluated sites at the end of puberty (16-18 years) compared with 10-12 years, with increases of 78% in the lumbar spine, 47% in the proximal femur, and 38% in the whole body.
Objective: To verify the behavior of the mineral bone content and density in male adolescents according to age and secondary sexual characters.Methods: 47 healthy adolescents between 10 and 19 years old were assessed according to weight, height, body mass index, puberty stage, calcium intake, bone mineral density and content in the lumbar spine and in the proximal femur. The bone mass was measured through bone densitometries. The intake of calcium was calculated through a 3-day diet. The BMI (body mass index) was calculated with the Quetelet Index and the puberty stage was defined according to Tanners criteria. The analysis used descriptive statistics such as average and standard deviation, and variance estimates to compare the different age groups. Moreover, the Tukey test was used to determine the significant differences.Results: It was evident that the calcium intake in the different ages assessed has not reached the minimum value of 800 mg. The bone mineral density and content showed an increase after the age of 14, as well as when the teenagers reached the sexual maturation stage G4. The mineralization parameters showed a high level when the teenagers were in the G3 stage, however, without statistical significance. Conclusion:The results indicate an important level of bone mineralization during adolescence. Maturation levels superior to G3 have shown more mineralization. This study proves that the critical years for bone mass gain start after the 14-15 years old or older.J Pediatr (Rio J). 2004;80(6):461-7: Adolescence, puberty stage, secondary sex characters, bone mass, bone mineral density.
Hevea brasiliensis is a native species of the Amazon Basin of South America and the primary source of natural rubber worldwide. Due to the occurrence of South American Leaf Blight disease in this area, rubber plantations have been extended to suboptimal regions. Rubber tree breeding is time-consuming and expensive, but molecular markers can serve as a tool for early evaluation, thus reducing time and costs. In this work, we constructed six different cDNA libraries with the aim of developing gene-targeted molecular markers for the rubber tree. A total of 8,263 reads were assembled, generating 5,025 unigenes that were analyzed; 912 expressed sequence tags (ESTs) represented new transcripts, and two sequences were highly up-regulated by cold stress. These unigenes were scanned for microsatellite (SSR) regions and single nucleotide polymorphisms (SNPs). In total, 169 novel EST-SSR markers were developed; 138 loci were polymorphic in the rubber tree, and 98 % presented transferability to six other Hevea species. Locus duplication was observed in H. brasiliensis and other species. Additionally, 43 SNP markers in 13 sequences that showed similarity to proteins involved in stress response, latex biosynthesis and developmental processes were characterized. cDNA libraries are a rich source of SSR and SNP markers and enable the identification of new transcripts. The new markers developed here will be a valuable resource for linkage mapping, QTL identification and other studies in the rubber tree and can also be used to evaluate the genetic variability of other Hevea species, which are valuable assets in rubber tree breeding.Electronic supplementary materialThe online version of this article (doi:10.1007/s11032-014-0095-2) contains supplementary material, which is available to authorized users.
The results indicate an important level of bone mineralization during adolescence. Maturation levels superior to G3 have shown more mineralization. This study proves that the critical years for bone mass gain start after the age of 14-15 years or older.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.