The wide range of clinical Chagas' disease manifestations, of which heart involvement is the most significant, because of its characteristics, frequency and consequences, and lack of treatment and cure, justify research in this area. Specific immunoglobulin G (IgG) antibody subclasses have been associated with human Chagas' disease. Thus, in this study, the profile of IgG subclasses against cytoplasmic (CRA) and flagellar (FRA) recombinant repetitive T. cruzi-specific antigens was correlated with cardiac (CARD, n=33), cardiodigestive (CD, n=7), and indeterminate (IND, n=20) forms of Chagas' disease by indirect enzyme-linked immunosorbent assay (ELISA). IgG subclasses were detected in almost all Chagas patients studied. Nevertheless, only specific IgG2 isotype FRA was found with a significant statistical difference in CARD patients when compared to IND patients. This result suggests the potential use of this isotype for prognostic purposes, for monitoring the progression of chronic Chagas' disease, and for predicting the risk of CARD damage. This is important information, as it could help physicians to evaluate and manage the treatment of their patients. However, a follow-up study is necessary to confirm our result.
Studies on diabetic nephropathy rarely take into account that the co-existence of diabetes and hypertension is frequent and further aggravates the prognosis of renal dysfunction. Adenosine can activate four subtypes of adenosine receptors (A 1 , A 2A , A 2B and A 3 ) and has been implicated in diabetic nephropathy. However, it is not known if, in hypertensive conditions, diabetes alters the presence/distribution profile of renal adenosine receptors. The aim of this work was to describe the presence/distribution profile of the four adenosine receptors in six renal structures (superficial/deep glomeruli, proximal/distal tubules, loop of Henle, collecting tubule) of the hypertensive kidney and to evaluate whether it is altered by diabetes. Immunoreactivities against the adenosine receptors were analyzed in six renal structures from spontaneously hypertensive rats (SHR, the control group) and from SHR rats with diabetes induced by streptozotocyin (SHR-STZ group). Data showed, for the first time, that all adenosine receptors were present in the kidney of SHR rats, although the distribution pattern was specific for each adenosine receptor subtype. Also, induction of diabetes in the SHR was associated with downregulation of adenosine A 2A receptors, which might be relevant for the development of hypertensive diabetic nephropathy. This study highlights the adenosine A 2A receptors as a potential target to explore to prevent and/or treat early diabetes-induced hyperfiltration, at least in hypertensive conditions.
Diabetic nephropathy (DN) and hypertension are prime causes for end-stage renal disease (ESRD) that often coexist in patients, but are seldom studied in combination. Kidney adenosine levels are markedly increased in diabetes, and the expression and function of renal adenosine receptors are altered in experimental diabetes. The aim of this work is to explore the impact of endogenous and exogenous adenosine on the expression/distribution profile of its receptors along the nephron of hypertensive rats with experimentally-induced diabetes. Using spontaneously hypertensive (SHR) rats rendered diabetic with streptozotocin (STZ), we show that treatment of SHR-STZ rats with an agonist of adenosine receptors increases A2A immunoreactivity in superficial glomeruli (SG), proximal tubule (PCT), and distal tubule (DCT). Differently, treatment of SHR-STZ rats with a xanthinic antagonist of adenosine receptors decreases adenosine A3 immunoreactivity in SG, PCT, DCT, and collecting duct. There is no difference in the immunoreactivity against the adenosine A1 and A2B receptors between the experimental groups. The agonist of adenosine receptors ameliorates renal fibrosis, probably via A2A receptors, while the antagonist exacerbates it, most likely due to tonic activation of A3 receptors. The reduction in adenosine A3 immunoreactivity might be due to receptor downregulation in response to prolonged activation. Altogether, these results suggest an opposite regulation exerted by endogenous and exogenous adenosine upon the expression of its A2A and A3 receptors along the nephron of hypertensive diabetic rats, which has a functional impact and should be taken into account when considering novel therapeutic targets for hypertensive-diabetic nephropathy.
Reducing Na + intake reduces the partial pressure of oxygen in the renal cortex and activates the renin-angiotensin-aldosterone system. r In the absence of high blood pressure, these consequences of dietary Na + reduction may be detrimental for the kidney. r In a normotensive animal experimental model, reducing Na + intake for 2 weeks increased renal oxygen consumption, which was normalized by mineralocorticoid receptor blockade. Furthermore, blockade of the angiotensin II AT 1 receptor restored cortical partial pressure of oxygen by improving oxygen delivery. r This shows that increased activity of the renin-angiotensin-aldosterone system contributes to increased oxygen metabolism in the kidney after 2 weeks of a low Na + diet. r The results provide insights into dietary Na + restriction in the absence of high blood pressure, and its consequences for the kidney.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.