BackgroundThe chromodomain, helicase DNA-binding protein 5 (CHD5) is a potential tumor suppressor gene located on chromosome 1p36, a region recurrently deleted in high risk neuroblastoma (NB). Previous data have shown that CHD5 mRNA is present in normal neural tissues and in low risk NB, nevertheless, the distribution of CHD5 protein has not been explored. The aim of this study was to investigate CHD5 protein expression as an immunohistochemical marker of outcome in NB. With this purpose, CHD5 protein expression was analyzed in normal neural tissues and neuroblastic tumors (NTs). CHD5 gene and protein expression was reexamined after induction chemotherapy in a subset of high risk tumors to identify potential changes reflecting tumor response.ResultsWe provide evidence that CHD5 is a neuron-specific protein, absent in glial cells, with diverse expression amongst neuron types. Within NTs, CHD5 immunoreactivity was found restricted to differentiating neuroblasts and ganglion-like cells, and absent in undifferentiated neuroblasts and stromal Schwann cells. Correlation between protein and mRNA levels was found, suggesting transcriptional regulation of CHD5. An immunohistochemical analysis of 90 primary NTs highlighted a strong association of CHD5 expression with favorable prognostic variables (age at diagnosis <12 months, low clinical stage, and favorable histology; P < 0.001 for all), overall survival (OS) (P < 0.001) and event-free survival (EFS) (P < 0.001). Multivariate analysis showed that CHD5 prognostic value is independent of other clinical and biologically relevant parameters, and could therefore represent a marker of outcome in NB that can be tested by conventional immunohistochemistry. The prognostic value of CHD5 was confirmed in an independent, blinded set of 32 NB tumors (P < 0.001).Reactivation of CHD5 expression after induction chemotherapy was observed mainly in those high risk tumors with induced tumor cell differentiation features. Remarkably, these NB tumors showed good clinical response and prolonged patient survival.ConclusionsThe neuron-specific protein CHD5 may represent a marker of outcome in NB that can be tested by conventional immunohistochemistry. Re-establishment of CHD5 expression induced by chemotherapy could be a surrogate marker of treatment response.
Neuroblastic tumors (NTs) include the neuroblastomas, ganglioneuroblastomas and ganglioneuromas. We have reported previously that the calcium-sensing receptor is expressed in differentiated, favorable NTs but almost undetectable in unfavorable neuroblastomas. We have now detected hypermethylation of a particular region within the CpG island encompassing the CaSR gene promoter 2 in neuroblastoma cell lines and 25% primary neuroblastomas. Hypermethylation of this region was associated with reduced CaSR messenger RNA expression and several predictors of poor outcome in neuroblastomas, including MYCN amplification. Treatment with 5'aza-2-deoxycitidine and/or trichostatin A restored CaSR expression in MYCN-amplified cell lines. Following 5'aza-2-deoxycitidine exposure, decreased percentages of methylated CpG sites were observed at the above-mentioned region. By interphase fluorescence in situ hybridization, variable percentages of nuclei with monosomy of chromosome 3, where the human CaSR gene resides, were observed in more than 90% of primary NTs of all subgroups. Nuclei harboring this alteration were heterogeneously distributed among tumor cells. Ectopic overexpression of the calcium-sensing receptor in two MYCN-amplified neuroblastoma cell lines in which this gene is silenced by promoter hypermethylation significantly reduced their in vitro proliferation rates and almost abolished their capacity to generate xenografts in immunocompromised mice. Finally, upon acute exposure to calcium, the primary activator of this receptor, calcium-sensing receptor-overexpressing neuroblastoma cells underwent apoptosis, a process dependent on sustained activation of ERK1/2. These data would support the hypothesis that epigenetic silencing of the CaSR gene is neither an in vitro artefact in neuroblastoma cell lines nor an irrelevant, secondary event in primary NTs, but a significant mechanism for neuroblastoma survival.
BackgroundNeuroblastic tumors include the neuroblastomas, ganglioneuroblastomas, and ganglioneuromas. Clinical behavior of these developmental malignancies varies from regression to aggressive growth with metastatic dissemination. Several clinical, histological, genetic, and biological features are associated with this diversity of clinical presentations. The calcium-sensing receptor (CaSR) is a G-protein coupled receptor with a key role in calcium homeostasis. We have previously reported that it is expressed in benign, differentiated neuroblastic tumors, but silenced by genetic and epigenetic events in unfavorable neuroblastomas. We have now analyzed three functionally relevant polymorphisms clustered at the signal transduction region of the CaSR (rs1801725, rs1042636 and rs1801726) to assess if genetic variants producing a less active receptor are associated with more aggressive disease course.MethodsPolymorphisms were analyzed in DNA samples from 65 patients using specific Taqman Genotyping Assays.ResultsMildly inactivating variant rs1801725 was associated with clinical stage 4 (P = 0.002) and the histological subgroup of undifferentiated neuroblastomas (P = 0.046). Patients harboring this polymorphism had significantly lower overall (P = 0.022) and event-free survival (P = 0.01) rates than those who were homozygous for the most common allele among Caucasians. However, this single locus genotype was not independently associated with outcome in multivariate analyses. Conversely, the tri-locus haplotype TAC was independently associated with an increased risk of death in the entire cohort (Hazard Ratio = 2.45; 95% Confidence Interval [1.14–5.29]; P = 0.022) and also in patients diagnosed with neuroblastomas (Hazard Ratio = 2.74; 95% Confidence Interval [1.20–6.25]; P = 0.016).ConclusionsThe TAC haplotype includes the moderately inactivating variant rs1801725 and absence of the gain-of-function rs1042636 polymorphism. Thus, its association with metastatic disease and poor outcome would add to our previous data and further support that inactivation of the CaSR gene is a mechanism associated with neuroblastoma malignant behavior.
The calcium–sensing receptor is a G protein-coupled receptor that exerts cell-type specific functions in numerous tissues and some cancers. We have previously reported that this receptor exhibits tumor suppressor properties in neuroblastoma. We have now assessed cinacalcet, an allosteric activator of the CaSR approved for clinical use, as targeted therapy for this developmental tumor using neuroblastoma cell lines and patient-derived xenografts (PDX) with different MYCN and TP53 status. In vitro, acute exposure to cinacalcet induced endoplasmic reticulum stress coupled to apoptosis via ATF4-CHOP-TRB3 in CaSR-positive, MYCN-amplified cells. Both phenotypes were partially abrogated by phospholipase C inhibitor U73122. Prolonged in vitro treatment also promoted dose- and time-dependent apoptosis in CaSR-positive, MYCN-amplified cells and, irrespective of MYCN status, differentiation in surviving cells. Cinacalcet significantly inhibited tumor growth in MYCN-amplified xenografts and reduced that of MYCN-non amplified PDX. Morphology assessment showed fibrosis in MYCN-amplified xenografts exposed to the drug. Microarrays analyses revealed up-regulation of cancer-testis antigens (CTAs) in cinacalcet-treated MYCN-amplified tumors. These were predominantly CTAs encoded by genes mapping on chromosome X, which are the most immunogenic. Other modulated genes upon prolonged exposure to cinacalcet were involved in differentiation, cell cycle exit, microenvironment remodeling and calcium signaling pathways. CTAs were up-regulated in PDX and in vitro models as well. Moreover, progressive increase of CaSR expression upon cinacalcet treatment was seen both in vitro and in vivo. In summary, cinacalcet reduces neuroblastoma tumor growth and up-regulates CTAs. This effect represents a therapeutic opportunity and provides surrogate circulating markers of neuroblastoma response to this treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.