Recent studies have been evaluating the presence of patterns associated with the occurrence of cancer in different types of tissue present in the individual affected by the disease. In this article, we describe preliminary results for the automatic detection of cancer (Walker 256 tumor) in laboratory animals using preclinical microphotograph images of the subject’s liver tissue. In the proposed approach, two different types of descriptors were explored to capture texture properties from the images, and we also evaluated the complementarity between them. The first texture descriptor experimented is the widely known Local Phase Quantization (LPQ), which is a descriptor based on spectral information. The second one is built by the application of a granulometry given by a family of morphological filters. For classification, we have evaluated the algorithms Support Vector Machine (SVM), k-Nearest Neighbor (k-NN) and Logistic Regression. Experiments carried out on a carefully curated dataset developed by the Enteric Neural Plasticity Laboratory of the State University of Maringá showed that both texture descriptors provide good results in this scenario. The accuracy rates obtained using the SVM classifier were 96.67% for the texture operator based on granulometry and 91.16% for the LPQ operator. The dataset was made available also as a contribution of this work. In addition, it is important to remark that the best overall result was obtained by combining classifiers created using both descriptors in a late fusion strategy, achieving an accuracy of 99.16%. The results obtained show that it is possible to automatically perform the identification of cancer in laboratory animals by exploring texture properties found on the tissue taken from the liver. Moreover, we observed a high level of complementarity between the classifiers created using LPQ and granulometry properties in the application addressed here.
Infecções por Staphylococcus aureus resistentes a meticilina (MRSA) são frequentes e possuem elevados níveis de mortalidade, principalmente em pacientes hospitalizados. A vancomicina está entre as drogas de escolha para o tratamento de tais infecções. Tendo em vista as limitações terapêuticas e o surgimento de resistência faz-se necessário estratégias para otimizar a farmacocinética e a farmacodinâmica da vancomicina. O objetivo deste trabalho foi estudar estratégias terapêuticas para otimizar o tratamento com vancomicina. A AUC/MIC>400 é uma medida proposta para otimizar a efetividade do tratamento do MRSA, no entanto esta estratégia não é rotina na prática clínica em virtude das limitações técnicas. A concentração mínima entre 16-20 mg/L e a máxima de 80 mg/L é geralmente padronizada para garantir a eficácia do tratamento e minimizar os efeitos adversos. Além disso, a fim de reduzir a nefrotoxicidade causada pela vancomicina propõem-se o regime de infusão continua que favorece a eficácia do tratamento.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.