Background Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease characterised by the loss of upper and lower motor neurons. Increasing evidence indicates that neuroinflammation mediated by microglia contributes to ALS pathogenesis. This microglial activation is evident in post-mortem brain tissues and neuroimaging data from patients with ALS. However, the role of microglia in the pathogenesis and progression of amyotrophic lateral sclerosis remains unclear, partly due to the lack of a model system that is able to faithfully recapitulate the clinical pathology of ALS. To address this shortcoming, we describe an approach that generates monocyte-derived microglia-like cells that are capable of expressing molecular markers, and functional characteristics similar to in vivo human brain microglia. Methods In this study, we have established monocyte-derived microglia-like cells from 30 sporadic patients with ALS, including 15 patients with slow disease progression, 6 with intermediate progression, and 9 with rapid progression, together with 20 non-affected healthy controls. Results We demonstrate that patient monocyte-derived microglia-like cells recapitulate canonical pathological features of ALS including non-phosphorylated and phosphorylated-TDP-43-positive inclusions. Moreover, ALS microglia-like cells showed significantly impaired phagocytosis, altered cytokine profiles, and abnormal morphologies consistent with a neuroinflammatory phenotype. Interestingly, all ALS microglia-like cells showed abnormal phagocytosis consistent with the progression of the disease. In-depth analysis of ALS microglia-like cells from the rapid disease progression cohort revealed significantly altered cell-specific variation in phagocytic function. In addition, DNA damage and NOD-leucine rich repeat and pyrin containing protein 3 (NLRP3) inflammasome activity were also elevated in ALS patient monocyte-derived microglia-like cells, indicating a potential new pathway involved in driving disease progression. Conclusions Taken together, our work demonstrates that the monocyte-derived microglia-like cell model recapitulates disease-specific hallmarks and characteristics that substantiate patient heterogeneity associated with disease subgroups. Thus, monocyte-derived microglia-like cells are highly applicable to monitor disease progression and can be applied as a functional readout in clinical trials for anti-neuroinflammatory agents, providing a basis for personalised treatment for patients with ALS.
Australia often experiences natural disasters and extreme weather conditions such as: flooding, sandstorms, heatwaves, and bushfires (also known as wildfires or forest fires). The proportion of the Australian population aged 65 years and over is increasing, alongside the severity and frequency of extreme weather conditions and natural disasters. Extreme heat can affect the entire population but particularly at the extremes of life, and patients with morbidities. Frequently identified as a vulnerable demographic in natural disasters, there is limited research on older adults and their capacity to deal with extreme heat and bushfires. There is a considerable amount of literature that suggests a significant association between mental disorders such as dementia, and increased vulnerability to extreme heat. The prevalence rate for dementia is estimated at 30%by age 85 years, but there has been limited research on the effects extreme heat and bushfires have on individuals living with dementia. This review explores the differential diagnosis of dementia, the Australian climate, and the potential impact Australia’s extreme heat and bushfires have on individuals from vulnerable communities including low socioeconomic status Indigenous and Non-Indigenous populations living with dementia, in both metropolitan and rural communities. Furthermore, we investigate possible prevention strategies and provide suggestions for future research on the topic of Australian bushfires and heatwaves and their impact on people living with dementia. This paper includes recommendations to ensure rural communities have access to appropriate support services, medical treatment, awareness, and information surrounding dementia.
Aims: Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease characterised by the loss of upper and lower motor neurons. Neuroinflammation mediated by microglial activation is evident in post-mortem brain tissues, and in brain imaging of patients with ALS. However, the exact role of microglia in ALS remains to be elucidated partly due to the lack of an accurate microglial model system that is able to recapitulate the clinical pathology of ALS. Moreover, direct sampling of microglia from patients with ALS is not feasible, further limiting the study of microglial function in ALS. To address this shortcoming, we describe an approach that generates monocyte-derived microglia (MDMi) that are capable of expressing molecular markers, and functional characteristics similar to resident human brain microglia. Importantly, MDMi can be routinely and reproducibly generated from ALS patient blood, and reveal patient heterogeneity associated with age, sex and disease subgroup. Methods: MDMi were successfully established from all 30 ALS patients, including 15 patients with slow disease progression, 6 with intermediate progression, and 9 with rapid progression, together with 20 non-affected heathy controls (HC). Results: Our ALS MDMi model recapitulated canonical pathological features of ALS including non-phosphorylated and phosphorylated-TDP-43-positive pathological inclusions. We further observed significantly impaired phagocytosis, altered cytokine expression and microglial morphology, as well as elevated DNA damage in ALS compared to HC MDMi. Abnormal phagocytosis was observed in all ALS cases, and was correlated to the progression of disease. Moreover, in-depth analysis of individual microglia revealed cell-specific variation in phagocytic function that was significantly altered, and exacerbated in rapid disease progression. Conclusions: Our approach enabled us to generate ALS patient microglia from peripheral blood samples using a rapid, robust, cost-effective, and reproducible protocol. We have shown that ALS monocyte-derived microglia have significantly altered functional behaviour compared to age-matched HCs, with a major deficit in phagocytic activity. This is also the first demonstration of abnormal TDP-43 localisation in microglia grown from ALS patients. Overall, this approach is highly applicable to monitor disease progression and can be applied as a functional readout in clinical trials for anti-neuroinflammatory agents. Additionally, this model system can be used as a basis for personalised therapeutic treatment for ALS, as well as other neurodegenerative diseases.
Neurodegenerative diseases are deteriorating conditions of the nervous system that are rapidly increasing in the aging population. Increasing evidence suggests that neuroinflammation, largely mediated by microglia, the resident immune cells of the brain, contributes to the onset and progression of neurodegenerative diseases. Hence, microglia are considered a major therapeutic target that could potentially yield effective disease-modifying treatments for neurodegenerative diseases. Despite the interest in studying microglia as drug targets, the availability of cost-effective, flexible, and patient-specific microglia cellular models is limited. Importantly, the current model systems do not accurately recapitulate important pathological features or disease processes, leading to the failure of many therapeutic drugs. Here, we review the key roles of microglia in neurodegenerative diseases and provide an update on the current microglia platforms utilised in neurodegenerative diseases, with a focus on human microglia-like cells derived from peripheral blood mononuclear cells as well as human-induced pluripotent stem cells. The described microglial platforms can serve as tools for investigating disease biomarkers and improving the clinical translatability of the drug development process in neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.