Airway mucus is a hallmark of respiratory syncytial virus (RSV) lower respiratory tract illness. Laboratory RSV strains differentially induce airway mucus production in mice. Here, we tested the hypothesis that RSV strains differ in pathogenesis by screening six low-passage RSV clinical isolates for mucogenicity and virulence in BALB/cJ mice. The RSV clinical isolates induced variable disease severity, lung interleukin-13 (IL-13) levels, and gob-5 levels in BALB/cJ mice. We chose two of these clinical isolates for further study. Infection of BALB/cJ mice with RSV A2001/2-20 (2-20) resulted in greater disease severity, higher lung IL-13 levels, and higher lung gob-5 levels than infection with RSV strains A2, line 19, Long, and A2001/3-12 (3-12). Like the line 19 RSV strain, the 2-20 clinical isolate induced airway mucin expression in BALB/cJ mice. The 2-20 and 3-12 RSV clinical isolates had higher lung viral loads than laboratory RSV strains at 1 day postinfection (p.i.). This increased viral load correlated with higher viral antigen levels in the bronchiolar epithelium and greater histopathologic changes at 1 day p.i. The A2 RSV strain had the highest peak viral load at day 4 p.i. RSV 2-20 infection caused epithelial desquamation, bronchiolitis, airway hyperresponsiveness, and increased breathing effort in BALB/cJ mice. We found that RSV clinical isolates induce variable pathogenesis in mice, and we established a mouse model of clinical isolate strain-dependent RSV pathogenesis that recapitulates key features of RSV disease.Respiratory syncytial virus (RSV) is the most important cause of bronchiolitis and viral pneumonia in children. Each year in the United States, RSV causes lower respiratory tract illness (LRI) in 20 to 30% of infants and leads to the hospitalization of approximately 1% of infants at a cost of $300 to $400 million (19,21,27). The incidence and disease severity of RSV can vary from year to year (47). Dominant circulating RSV strains are generally replaced each year, likely by a process involving immune selection (5,6,53,54). RSV strain differences may contribute to year-to-year and/or patient-topatient variations in clinical severity.In BALB/cJ mice, laboratory RSV strains (A2, Long, and line 19) differ in their ability to cause pulmonary interleukin-13 (IL-13) and mucin expression (34, 41). We are interested in RSV-induced mucin expression in mice because mucus overabundance contributes to airway obstruction in severe RSV disease in children (2,33,44,56). IL-13 is a cytokine linked to mucus production (71). The line 19 RSV strain induces lung IL-13 and airway mucin expression in BALB/cJ mice, whereas the A2 and Long RSV strains do not (34, 41). However, the in vitro passage histories of RSV strains A2, Long, and line 19 are not defined and involve many serial passages. Thus, it is possible that mutations in these RSV laboratory strains determine pathogenesis phenotypes in the mouse model. RSV clinical isolates have not been studied extensively in vivo, and the role of RSV strain differences in...
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, employs two key host proteins to gain entry and replicate within cells, angiotensin-converting enzyme 2 (ACE2) and the cell surface transmembrane protease serine 2 (TMPRSS2). TMPRSS2 was first characterized as an androgen-regulated gene in the prostate. Supporting a role for sex hormones, males relative to females are disproportionately affected by COVID-19 in terms of mortality and morbidity. Several studies, including one employing a large epidemiological cohort, suggested that blocking androgen signaling is protective against COVID-19. Here, we demonstrate that androgens regulate the expression of ACE2, TMPRSS2, and androgen receptor (AR) in subsets of lung epithelial cells. AR levels are markedly elevated in males relative to females greater than 70 y of age. In males greater than 70 y old, smoking was associated with elevated levels of AR and ACE2 in lung epithelial cells. Transcriptional repression of the AR enhanceosome with AR or bromodomain and extraterminal domain (BET) antagonists inhibited SARS-CoV-2 infection in vitro. Taken together, these studies support further investigation of transcriptional inhibition of critical host factors in the treatment or prevention of COVID-19.
The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the associated disease COVID-19, requires therapeutic interventions that can be rapidly translated to clinical care. Unfortunately, traditional drug discovery methods have a >90% failure rate and can take 10-15 years from target identification to clinical use. In contrast, drug repurposing can significantly accelerate translation. We developed a quantitative high-throughput screen to identify efficacious single agents and combination therapies against SARS-CoV-2. Quantitative high-content morphological profiling was coupled with an AI-based machine learning strategy to classify features of cells for infection and stress. This assay detected multiple antiviral mechanisms of action (MOA), including inhibition of viral entry, propagation, and modulation of host cellular responses. From a library of 1,425 FDA-approved compounds and clinical candidates, we identified 16 dose-responsive compounds with antiviral effects. In particular, we discovered that lactoferrin is an effective inhibitor of SARS-CoV-2 infection with an IC50 of 308 nM and that it potentiates the efficacy of both remdesivir and hydroxychloroquine. Lactoferrin also stimulates an antiviral host cell response and retains inhibitory activity in iPSC-derived alveolar epithelial cells, a model for the primary site of infection. Given its safety profile in humans, these data suggest that lactoferrin is a readily translatable therapeutic adjunct for COVID-19. Additionally, several commonly prescribed drugs were found to exacerbate viral infection and warrant clinical investigation. We conclude that morphological profiling for drug repurposing is an effective strategy for the selection and optimization of drugs and drug combinations as viable therapeutic options for COVID-19 pandemic and other emerging infectious diseases.
The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the associated disease COVID-19, requires therapeutic interventions that can be rapidly identified and translated to clinical care. Traditional drug discovery methods have a >90% failure rate and can take 10 to 15 y from target identification to clinical use. In contrast, drug repurposing can significantly accelerate translation. We developed a quantitative high-throughput screen to identify efficacious agents against SARS-CoV-2. From a library of 1,425 US Food and Drug Administration (FDA)-approved compounds and clinical candidates, we identified 17 hits that inhibited SARS-CoV-2 infection and analyzed their antiviral activity across multiple cell lines, including lymph node carcinoma of the prostate (LNCaP) cells and a physiologically relevant model of alveolar epithelial type 2 cells (iAEC2s). Additionally, we found that inhibitors of the Ras/Raf/MEK/ERK signaling pathway exacerbate SARS-CoV-2 infection in vitro. Notably, we discovered that lactoferrin, a glycoprotein found in secretory fluids including mammalian milk, inhibits SARS-CoV-2 infection in the nanomolar range in all cell models with multiple modes of action, including blockage of virus attachment to cellular heparan sulfate and enhancement of interferon responses. Given its safety profile, lactoferrin is a readily translatable therapeutic option for the management of COVID-19.
Expression of the JSRV envelope (Env) is sufficient to transform immortalized rodent fibroblasts. A putative docking site for the PI3-K kinase (Y(590)-X-X-M(593)) in the cytoplasmic tail of the transmembrane domain of the JSRV Env is a major determinant of viral-induced cell transformation. Akt is constitutively phosphorylated in rodent fibroblasts transformed by the JSRV Env. However, recent data suggest that Y590 and M593 are not necessary for JSRV Env-induced transformation of the immortalized chicken fibroblasts cell line DF-1. In this study we found that JSRV-induced transformation of DF-1 cells is Akt-independent. In addition, a replication-competent avian vector expressing the JSRV Env (RCASBP(A)+JE) was also able to induce transformation of primary chicken embryo fibroblasts (CEF). Vectors expressing JSRV Env Y590 mutants were still able to induce CEF cells transformation but not as efficiently as the vectors expressing the wild-type Env. In CEF cells, as in DF-1 cells, only the expression of the wild-type Env induced constitutive phosphorylation of Akt. Thus, in chicken cells, the degree of transformation induced by the JSRV Env is maximum in the presence of Y590 and Akt phosphorylation. We addressed the significance of Akt phosphorylation in rat 208F cells transformed by the JSRV Env and showed that Akt is indeed activated and shows kinase activity. Inhibitors of the PI-3K/Akt pathway reproducibly decreased the transformation efficiency of the JSRV Env. In vivo, we found phosphorylated Akt only in nasal tumors induced by the enzootic nasal tumor virus (ENTV), a JSRV-related beta-retrovirus. No evidence of Akt phosphorylation was found in lung tumor sections of sheep affected by pulmonary adenocarcinoma. As a whole, these results suggest that the activation of the PI-3K/Akt pathway contributes to the process of JSRV-induced cell transformation but most likely is not the primary determinant both in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.