We have undertaken an in-depth transcriptome analysis of adipogenesis in human adipose-derived stromal cells (ASCs) induced to differentiate into adipocytes in vitro. Gene expression was assessed on days 1, 7, 14 and 21 post-induction and genes differentially expressed numbered 128, 218, 253 and 240 respectively. Up-regulated genes were associated with blood vessel development, leukocyte migration, as well as tumor growth, invasion and metastasis. They also shared common pathways with certain obesity-related pathophysiological conditions. Down-regulated genes were enriched for immune response processes. KLF15, LMO3, FOXO1 and ZBTB16 transcription factors were up-regulated throughout the differentiation process. CEBPA, PPARG, ZNF117, MLXIPL, MMP3 and RORB were up-regulated only on days 14 and 21, which coincide with the maturation of adipocytes and could possibly serve as candidates for controlling fat accumulation and the size of mature adipocytes. In summary, we have identified genes that were up-regulated only on days 1 and 7 or days 14 and 21 that could serve as potential early and late-stage differentiation markers.
Hematopoietic stem cell transplantation (HSCT) is common practice today for life threatening malignant and non‐malignant diseases of the blood and immune systems. Umbilical cord blood (UCB) is rich in hematopoietic stem cells (HSCs) and is an attractive alternative to harvesting HSCs from bone marrow or when mobilized into peripheral blood. One of the most appealing attributes of UCB is that it can be banked for future use and hence provides an off‐the‐shelf solution for patients in urgent need of a transplantation. This has led to the establishment of publicly funded and private UCB banks, as seen by the rapid growth of the UCB industry in the early part of this century. However, from about 2010, the release of UCB units for treatment purposes plateaued and started to decrease year‐on‐year from 2013 to 2016. Our interest has been to investigate the factors contributing to these changes. Key drivers influencing the UCB industry include the emergence of haploidentical HSCT and the increasing use of UCB units for regenerative medicine purposes. Further influencing this dynamic is the high cost associated with UCB transplantation, the economic impact of sustaining public bank operations and an active private UCB banking sector. We foresee that these factors will continue in a tug‐of‐war fashion to shape and finally determine the fate of the UCB industry. stem cells translational medicine 2018 Stem Cells Translational Medicine 2018;7:643–650
Adipose-derived stromal cells (ASCs) are being used extensively in clinical trials. These trials require that ASCs are prepared using good manufacturing practices (GMPs) and are safe for use in humans. The majority of clinical trials in which ASCs are expanded make use of fetal bovine serum (FBS). While FBS is used traditionally in the research setting for in vitro expansion, it does carry the risk of xenoimmunization and zoonotic transmission when used for expanding cells destined for therapeutic purposes. In order to ensure a GMP quality product for cellular therapy, in vitro expansion of ASCs has been undertaken using xeno-free (XF), chemically-defined, and human blood-derived alternatives. These investigations usually include the criteria proposed by the International Society of Cellular Therapy (ISCT) and International Fat Applied Technology Society (IFATS). The majority of studies use these criteria to compare plastic-adherence, morphology, the immunophenotype and the trilineage differentiation of ASCs under the different medium supplemented conditions. Based on these studies, all of the alternatives to FBS seem to be suitable replacements; however, each has its own advantages and drawbacks. Very few studies have investigated the effects of the supplements on the immunomodulation of ASCs; the transcriptome, proteome and secretome; and the ultimate effects in appropriate animal models. The selection of medium supplementation will depend on the downstream application of the ASCs and their efficacy and safety in preclinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.