Autophagy is a conserved pathway that delivers cytoplasmic contents to the lysosome for degradation. Here we consider its roles in neuronal health and disease. We review evidence from mouse knockout studies demonstrating the normal functions of autophagy as a protective factor against neurodegeneration associated with intracytoplasmic aggregate-prone protein accumulation as well as other roles, including in neuronal stem cell differentiation. We then describe how autophagy may be affected in a range of neurodegenerative diseases. Finally, we describe how autophagy upregulation may be a therapeutic strategy in a wide range of neurodegenerative conditions and consider possible pathways and druggable targets that may be suitable for this objective.
Autophagy is a conserved intracellular pathway that delivers cytoplasmic contents to lysosomes for degradation via double-membrane autophagosomes. Autophagy substrates include organelles such as mitochondria, aggregate-prone proteins that cause neurodegeneration and various pathogens. Thus, this pathway appears to be relevant to the pathogenesis of diverse diseases, and its modulation may have therapeutic value. Here, we focus on the cell and molecular biology of mammalian autophagy and review the key proteins that regulate the process by discussing their roles and how these may be modulated by posttranslational modifications. We consider the membrane-trafficking events that impact autophagy and the questions relating to the sources of autophagosome membrane(s). Finally, we discuss data from structural studies and some of the insights these have provided.
SummaryAutophagic protein degradation is mediated by autophagosomes that fuse with lysosomes, where their contents are degraded. The membrane origins of autophagosomes may involve multiple sources. However, it is unclear if and where distinct membrane sources fuse during autophagosome biogenesis. Vesicles containing mATG9, the only transmembrane autophagy protein, are seen in many sites, and fusions with other autophagic compartments have not been visualized in mammalian cells. We observed that mATG9 traffics from the plasma membrane to recycling endosomes in carriers that appear to be routed differently from ATG16L1-containing vesicles, another source of autophagosome membrane. mATG9- and ATG16L1-containing vesicles traffic to recycling endosomes, where VAMP3-dependent heterotypic fusions occur. These fusions correlate with autophagosome formation, and both processes are enhanced by perturbing membrane egress from recycling endosomes. Starvation, a primordial autophagy activator, reduces membrane recycling from recycling endosomes and enhances mATG9-ATG16L1 vesicle fusion. Thus, this mechanism may fine-tune physiological autophagic responses.
Nine neurodegenerative diseases are caused by expanded polyglutamine (polyQ) tracts in different proteins, like huntingtin in Huntington’s disease (HD) and ataxin-3 in spinocerebellar ataxia type 3 (SCA3)1, 2. Age-at-onset decreases with increasing polyglutamine length in these proteins and the normal length is also polymorphic3. PolyQ expansions drive pathogenesis in these diseases, as isolated polyQ tracts are toxic, and an N-terminal huntingtin fragment comprising exon 1, which occurs in vivo due to alternative splicing4, causes toxicity. While such mutant proteins are aggregate-prone5, toxicity is also associated with soluble forms of the proteins6. The function of the polyQ tracts in many normal/wild-type cytoplasmic proteins is unclear. One such protein is the deubiquitinating enzyme ataxin 37, 8, which is widely expressed in the brain9, 10. Here we show that the polyQ domain in wild-type ataxin-3 enables its interaction with beclin 1, a key autophagy initiator11. This interaction allows the deubiquitinase activity of ataxin-3 to protect beclin 1 from proteasome-mediated degradation and thus enables autophagy. Starvation-induced autophagy, which is regulated by beclin 1, was particularly inhibited in ataxin-3-depleted human cell-lines, primary neurons and in-vivo. This activity of ataxin-3 and its interaction with beclin 1 mediated by its polyQ domain was competed by other soluble proteins with polyQ tracts in a length-dependent fashion. This resulted in impaired starvation-induced autophagy in cells expressing mutant huntingtin exon 1, which was also recapitulated in the brain of HD mouse model and in patient cells. A similar phenomenon was also seen with other polyQ disease proteins, including mutant ataxin-3 itself. Our data thus describe a specific function for a wild-type polyQ tract which is abrogated by a competing longer polyQ mutation in a disease protein. This also reveals a deleterious function of such mutations distinct from their aggregation propensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.