TGF-beta proteins are main regulators of blood vessel development and maintenance. Here, we report an unprecedented link between TGF-beta signaling and arterial hypertension based on the analysis of mice mutant for Emilin1, a cysteine-rich secreted glycoprotein expressed in the vascular tree. Emilin1 knockout animals display increased blood pressure, increased peripheral vascular resistance, and reduced vessel size. Mechanistically, we found that Emilin1 inhibits TGF-beta signaling by binding specifically to the proTGF-beta precursor and preventing its maturation by furin convertases in the extracellular space. In support of these findings, genetic inactivation of Emilin1 causes increased TGF-beta signaling in the vascular wall. Strikingly, high blood pressure observed in Emilin1 mutants is rescued to normal levels upon inactivation of a single TGF-beta1 allele. This study highlights the importance of modulation of TGF-beta availability in the pathogenesis of hypertension.
Abstract. To identify regions involved in tissue specific regulation of transcription of the a l (VI) collagen chain, transgenic mice were generated carrying various portions of the gene's 5'-flanking sequence fused to the E. coli 13-galactosidase gene. Analysis of the transgene expression pattern by X-gal staining of embryos revealed that: (a) The proximal 0.6 kb of promoter sequence activated transcription in mesenchymal cells at sites of insertion of superficial muscular aponeurosis into the skin; tendons were also faintly positive. (b) The region between -4.0 and -5.4 kb from the transcription start site was required for activation of the transgene in nerves. It also drove expression in joints, in intervertebral disks, and in subepidermal and vibrissae mesenchyme. (c) The fragment comprised within -6.2 and -7.5 kb was necessary for high level transcription in skeletal muscle and meninges. Positive cells in muscle were mostly mononuclear and probably included connective tissue elements, although staining of myoblasts was not ruled out. This fragment also activated expression in joints, in intervertebral disks, and in subepidermal and vibrissae mesenchyme. (d) [3-Galactosidase staining in vibrissae induced by the sequences -4.0 to -5.4 and -6.2 to -7.5 was not coincident: with the latter sequence labeled nuclei were found mainly in the ventral and posterior quadrant, and, histologically, in the outer layers of mesenchyme surrounding and between the follicles, whereas with the former the remaining quadrants were positive and expressing cells were mostly in the inner layers of the dermal sheath. (e) Other tissues, notably lung, adrenal gland, digestive tract, which produce high amounts of collagen type VI, did not stain for 13-galactosidase. (f) Central nervous system and retina, in which the endogenous gene is inactive, expressed the lacZ transgene in most lines. The data suggest that transcription of al(VI) in different tissues is regulated by distinct sequence elements in a modular arrangement, a mechanism which confers high flexibility in the temporal and spatial pattern of expression during development.
Cis-acting regions regulating transcription of the alpha1(VI) collagen chain have been investigated in vitro by transfection of promoter-CAT (where CAT is chloramphenicol acetyltransferase) constructs in different types of cultured cells and in vivo in transgenic mice carrying the same CAT constructs or minigenes derived from the fusion of genomic and cDNA sequences in which small deletions of the collagenous domain had been engineered. 215 bp of 5'-flanking sequence showed promoter activity in vitro, yet were not expressed in any tissue of six transgenic lines, indicating that this fragment contains the basal promoter, but not activator sequences. Constructs with 0.6 and 1.4 kb of the 5'-flanking region produced significantly higher CAT activity in transfected cells and were expressed in tissues of about 30% of transgenic lines. Although CAT activity was totally unrelated to the pattern of expression of the alpha1(VI) mRNA, these results suggest the presence of an activator(s) between -0.2 and -0.6 kb from the transcription start site. When the promoter size was increased to 5.4 or 6.5 kb, CAT activity was stimulated severalfold relative to the construct p1.4CAT and p4.0CAT in NIH3T3 fibroblasts and chick embryo chondroblasts. This stimulation was, however, not observed in C2C12 myoblasts. Transgenic mice generated with 6.5CAT construct or minigenes, containing 6.2 kb of promoter, exhibited very high levels of expression, which was similar to the relative amount alpha1(VI) mRNA in the majority of tissues, with the exception of lung, adrenal gland and uterus. CAT activity in tissues was 100-1000-fold higher than that measured in transgenic mice with shorter promoter (0.6 or 1.4 kb). Since expression of minigenes was determined by RNase protection assay, the levels of mRNA per transgene copy were compared to those of the chromosomal gene and found to be always less than one quarter. These data suggest that the region -4.0/-5.4 contains an important activator(s) sequence which induces transcription in several, but not all, type VI collagen-producing tissues. Finally, analysis with the longest promoter fragment (7.5 kb) revealed a complex effect of the region -6.5/-7.5 on alpha1(VI) chain transcription. The sequence was inhibitory in NIH3T3 cells, indifferent in myoblasts and activating in chondroblasts in vitro, whereas transgenic animals generated with 7.5CAT construct produced a pattern of expression comparable to that of 6.5CAT and minigenes. During postnatal development transcription from both the endogenous gene and the transgenes decreased. However, the ratio of transgene/chromosomal gene expression was not constant, but varied in a way dependent on the tissue. This observation suggests that the fragment studied contains key sequences for the age-dependent regulation of the alpha1(VI) gene. No phenotypic alterations were induced by the presence of mutations in the minigenes.
Analysis of the chromatin of different cell types has identified four DNase I-hypersensitive sites in the 5-flanking region of the ␣1(VI) collagen gene, mapping at ؊4.6, ؊4.4, ؊2.5, and ؊0.1 kilobase (kb) from the RNA start site. The site at ؊2.5 kb was independent from, whereas the other three sites could be related to, ␣1(VI) mRNA expression. The site at ؊0.1 kb was present in cells expressing (NIH3T3 and C2C12) but absent in cells not expressing (EL4) the mRNA; the remaining two sites were apparently related with high levels of mRNA. DNase I footprinting and gel-shift assays with NIH3T3 and C2C12 nuclear extracts have located a binding site for transcription factor AP1 (activator protein 1) between nucleotides ؊104 and ؊73. When nuclear extracts from EL4 lymphocytes were used, the AP1 site-containing sequence was bound by proteins not related to AP1. The existence of the hypersensitive site at ؊0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.