The number of out-of-school science programs, which refers to science education at outside school environments, is gradually increasing. Although out-of-school programs are generally considered to be important for the development of pupils' science knowledge and skills, more evidence concerning the learning effect of these programs is needed. In the present study, we explored whether different degrees of implementation of a connected in-school and out-of-school science program affect pupils' cognitive science skills in relation to teachers'/instructors' support. We used a multiple case study design with four cases comprising three different degrees of program implementation: optimal, intermediary and marginal. The cases comprised pupils of upper grade elementary school classes, their teachers, and the instructors of the out-of-school activity. The effect of the program was measured by coding pupils' performance with a scale based on skill theory, and by coding teacher's/instructor's support with the Openness Scale. The data was gathered from microgenetic measurements over time, corresponding with an in-depth analysis of the process of change in naturalistic conditions. We found the highest learning effect in the optimal program implementation, which indicates that it is favorable to implement the complete program, and train teachers/instructors to use open teaching focused on conceptual understanding.Several studies have pointed to the importance of connecting the out-of-school activities to the school curriculum (see e.g., [1,2,15]). In two meta analyses, Rickinson et al. [1] found evidence that out-of-school programs, if well planned and embedded into the school context, add value for learning. However, research also shows that outof-school programs are often not adopted properly [8,10,16]. Consequently, it seems that the effect of connected in-
116American Journal of Educational Research school and out-of-school science programs is dependent on the implementation. According to Durlak and DuPre [17], the effect of implementation is dependent on: a) the quality of the program implementation (i.e., how well the program components have been carried out); and b) quantity of program implementation (i.e., dosage of components of the originally intended program that was carried out).
In order for out-of-school science activities that take place during school hours but outside the school context to be successful, instructors must have sufficient pedagogical content knowledge (PCK) to guarantee high-quality teaching and learning. We argue that PCK is a quality of the instructor-pupil system that is constructed in real-time interaction. When PCK is evident in real-time interaction, we define it as Expressed Pedagogical Content Knowledge (EPCK). The aim of this study is to empirically explore whether EPCK shows a systematic pattern of variation, and if so whether the pattern occurs in recurrent and temporary stable attractor states as predicted in the complex dynamic systems theory. This study concerned nine out-of-school activities in which pupils of upper primary school classes participated. A multivariate coding scheme was used to capture EPCK in real time. A principal component analysis of the time series of all the variables reduced the number of components. A cluster revealed general descriptions of the components across all cases. Cluster analyses of individual cases divided the time series into sequences, revealing High-, Low-, and Non-EPCK states. High-EPCK attractor states emerged at particular moments during activities, rather than being present all the time. Such High-EPCK attractor states were only found in a few cases, namely those where the pupils were prepared for the visit and the instructors were trained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.