This is the first validation study of DN4 for painful diabetic polyneuropathy, which supports its usefulness as both a screening tool for neuropathic pain in diabetes and a reliable component of the diagnostic work up for painful diabetic polyneuropathy.
MicroRNAs are small single-stranded molecules that have emerged as important genomic regulators in different pathways. Different studies have shown that they are implicated in the metabolism and glucose homeostasis, and therefore, they could also be involved in the pathogenesis of metabolic disorders such as type 2 diabetes (T2DM). The aim of this study was to verify whether genetic variations in candidate microRNA (miRNA or miR) genes could contribute to T2DM susceptibility. We have selected 13 miRNAs as candidate loci according to literature data and to a computational analysis. MicroRNA genes were analyzed by direct sequencing in a cohort of 163 Italian T2DM patients and 185 healthy controls. We identified 6 novel variants never described before and 9 SNPs already described in databases. Five newly identified variants were found only in the cases group. We performed a case/control association study to test the associations of particular alleles/genotypes of identified SNPs with the disease. Two polymorphisms were associated with T2DM susceptibility: in particular, the G allele of rs895819 in hsa-mir-27a has shown a significantly protective effect (OR = 0.58 and P = 0.008), while the G allele of rs531564 in hsa-mir-124a appears to be a risk allele (OR = 2.15, P = 0.008). This is the first report indicating that genetic polymorphisms in miRNA regions could contribute to T2DM susceptibility.
COMPASS 31 can represent a valid, easy-to-use, quantitative assessment tool for autonomic symptoms in diabetic neuropathy, with a fair diagnostic accuracy for both cardiovascular autonomic neuropathy and diabetic polyneuropathy.
Painful diabetic polyneuropathy (PDPN) is generally considered a variant of diabetic polyneuropathy (DPN) but the identification of distinctive aspects that characterize painful compared with painless DPN has however been addressed in many studies, mainly with the purpose of better understanding the mechanisms of neuropathic pain in the scenario of peripheral nerve damage of DPN, of determining risk markers for pain development, and also of recognizing who might respond to treatments. This review is aimed at examining available literature dealing with the issue of similarities and differences between painful and painless DPN in an attempt to respond to the question of whether painful and painless DPN are the same disease or not and to address the conundrum of why some people develop the insensate variety of DPN whilst others experience distressing pain. Thus, from the perspective of comparing painful with painless forms of DPN, this review considers the clinical correlates of PDPN, its distinctive framework of symptoms, signs, and nerve functional and structural abnormalities, the question of large and small fiber involvement, the peripheral pain mechanisms, the central processing of pain and some new insights into the pathogenesis of pain in peripheral polyneuropathies and PDPN.
Diabetic polyneuropathy (DPN) and cardiovascular autonomic neuropathy (CAN) are common type 2 diabetes complications with a large inter-individual variability in terms of clinical manifestations and severity. Our aim was to evaluate a possible involvement of genetic polymorphisms in miRNA regions in the susceptibility to DPN and CAN. Nine polymorphisms in miRNA genes were studied in a sample of 132 type 2 diabetes patients (T2D) analysed for DPN and 128 T2D patients analysed for CAN. A genotype-phenotype correlation analysis was performed. The T allele of rs11888095 single nucleotide polymorphism (SNP) in MIR128a was significantly associated with a higher risk (ORadj = 4.89, P adj = 0.02), whereas the C allele of rs2910164 SNP in MIR146a was associated with a lower risk to develop DPN (ORadj = 0.49, P adj = 0.09), respectively. A multivariate logistic regression analysis confirmed that both SNPs contribute to DPN (p < 0.001 and p = 0.01 for MIR128a and MIR146a, respectively). MIR128a SNP significantly contributed also to DPN score (p = 0.026). Rs895819 SNP in MIR27a was significantly associated with a higher risk to develop early CAN (P adj = 0.023 and ORadj = 3.43). The rs2910164 SNP in MIR146a showed a protective effect respect to early CAN (P adj = 0.052, ORadj = 0.32) and to confirmed CAN (P adj = 0.041, ORadj = 0.13). The same SNP resulted significantly associated with a lower CAN score and a higher E/I (p = 0.002 and p = 0.003, respectively). In conclusion, we described associations of MIR128a and MIR146a SNPs with DPN susceptibility and of MIR146a and MIR27a SNPs with CAN susceptibility. This is the first study showing that genetic variability in miRNA genes could be involved in diabetic neuropathies susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.