This review is a journey concerning the investigations of the kinetic resolution of racemic ibuprofen for the last 20 years. The relevancy of the pharmacological uses of the S( + ) enantiomer along with its higher cost compared with racemic profen are the driving forces of a variety of scientific research studies addressing the enzymatic resolution of ibuprofen through enantiomeric esterification using lipases as biocatalysts. Lipases of fungal sources such as Candida rugosa, Rhizomucor miehei and the lipase B of Candida antarctica have been extensively studied both in homogeneous and heterogeneous (immobilized on solid supports) processes. In this context, the various alcohols and organic co-solvents frequently used in the esterification of racemic ibuprofen are summarized and discussed in this review. Moreover, recent investigations using membranes as reactors coupled with the separation of the desired product and microfluidic devices are presented. Finally, some guidelines about future perspectives regarding the technology of the kinetic resolution of profens and research niches are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.