While it is well established that individuals with psychopathy have a marked deficit in affective arousal, emotional empathy, and caring for the well-being of others, the extent to which perspective taking can elicit an emotional response has not yet been studied despite its potential application in rehabilitation. In healthy individuals, affective perspective taking has proven to be an effective means to elicit empathy and concern for others. To examine neural responses in individuals who vary in psychopathy during affective perspective taking, 121 incarcerated males, classified as high (n = 37; Hare psychopathy checklist-revised, PCL-R ≥ 30), intermediate (n = 44; PCL-R between 21 and 29), and low (n = 40; PCL-R ≤ 20) psychopaths, were scanned while viewing stimuli depicting bodily injuries and adopting an imagine-self and an imagine-other perspective. During the imagine-self perspective, participants with high psychopathy showed a typical response within the network involved in empathy for pain, including the anterior insula (aINS), anterior midcingulate cortex (aMCC), supplementary motor area (SMA), inferior frontal gyrus (IFG), somatosensory cortex, and right amygdala. Conversely, during the imagine-other perspective, psychopaths exhibited an atypical pattern of brain activation and effective connectivity seeded in the anterior insula and amygdala with the orbitofrontal cortex (OFC) and ventromedial prefrontal cortex (vmPFC). The response in the amygdala and insula was inversely correlated with PCL-R Factor 1 (interpersonal/affective) during the imagine-other perspective. In high psychopaths, scores on PCL-R Factor 1 predicted the neural response in ventral striatum when imagining others in pain. These patterns of brain activation and effective connectivity associated with differential perspective-taking provide a better understanding of empathy dysfunction in psychopathy, and have the potential to inform intervention programs for this complex clinical problem.
Identification of factors that predict recurrent antisocial behavior is integral to the social sciences, criminal justice procedures, and the effective treatment of high-risk individuals. Here we show that error-related brain activity elicited during performance of an inhibitory task prospectively predicted subsequent rearrest among adult offenders within 4 y of release (N = 96). The odds that an offender with relatively low anterior cingulate activity would be rearrested were approximately double that of an offender with high activity in this region, holding constant other observed risk factors. These results suggest a potential neurocognitive biomarker for persistent antisocial behavior.R isk assessment is a major component of criminal justice and treatment decisions. One crucial application of such predictions is the ability to identify, manage, and remediate antisocial behavior. Decisions that rely on antisocial risk prediction pervade the justice system, beginning with recommendations for bail, jail, and probation to sentencing, civil commitment, parole decisions, diversion, and treatment program assignments, to name a few. Initial attempts to predict future antisocial behavior based purely on clinicians' opinions have been shown to be highly inaccurate (1). Subsequent research that used evidence-based static (e.g., age, sex, criminal history) and dynamic (e.g., impulsivity, drug use, social support) risk factors have led to significant improvements in predicting future antisocial behavior (2-4).One of the strongest and most widely studied risk factors for recidivism is impulsivity, or behavioral disinhibition, the persistent lack of restraint and consideration of consequences (3). Risk assessments, personality tests, and neuropsychological measures have been used to assess impulsivity and have demonstrated the ability to predict future antisocial behavior. However, these latter measures serve only as proxies for direct measurement of the brain's inhibitory and cognitive control systems. Indeed, neuroscientists have suggested that endophenotypes carry the potential to characterize underlying traits and abnormalities independently of behavioral phenotypes (5). This stance has been supported by recent functional MRI (fMRI) studies that have, for instance, accurately predicted choices in a motor-decision task (6), substance abuse relapse (7-10), and consumer purchases (i.e., neuromarketing) (11). These results raise the possibility that more direct measures of brain activity associated with impulse control may lend incremental utility to the prediction of future antisocial behavior.The brain regions associated with impulse control have been well characterized. Consistent among these regions is the anterior cingulate cortex (ACC), a limbic region associated with error processing, conflict monitoring, response selection, and avoidance learning (12-16). Neurobiological models suggest that the ACC is central to an error-monitoring circuit wherein it relays error information from the basal ganglia and inferior fron...
A defining characteristic of psychopathy is the willingness to intentionally commit moral transgressions against others without guilt or remorse. Despite this ‘moral insensitivity’, the behavioral and neural correlates of moral decision-making in psychopathy have not been well studied. To address this issue, the authors used functional magnetic resonance imaging (fMRI) to record hemodynamic activity in 72 incarcerated male adults, stratified into psychopathic (N = 16) and nonpsychopathic (N = 16) groups based on scores from the Hare Psychopathy Checklist-Revised, while they made decisions regarding the ‘severity of moral violations’ of pictures that did or did not depict moral situations. Consistent with hypotheses, an analysis of brain activity during the evaluation of pictures depicting moral violations in psychopaths vs. nonpsychopaths showed atypical activity in several regions involved in moral decision-making. This included reduced moral/non-moral picture distinctions in the ventromedial prefrontal cortex and anterior temporal cortex in psychopaths relative to nonpsychopaths. In a separate analysis, the association between severity of moral violation ratings and brain activity across participants was compared in psychopaths versus nonpsychopaths. Results revealed a positive association between amygdala activity and severity ratings that was greater in nonpsychopaths than psychopaths, and a negative association between posterior temporal activity and severity ratings that was greater in psychopaths than nonpsychopaths. These results reveal potential neural underpinnings of moral insensitivity in psychopathy and are discussed with reference to neurobiological models of morality and psychopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.