The placenta is a temporal, dynamic and diverse organ with important immunological features that facilitate embryonic and fetal development and survival, notwithstanding the fact that several aspects of its formation and function closely resemble tumor progression. Placentation in mammals is commonly used to characterize the evolution of species, including insights into human evolution. Although most placentas are discarded after birth, they are a high-yield source for the isolation of stem/progenitor cells and are rich in extracellular matrix (ECM), representing an important resource for regenerative medicine purposes. Interactions among cells, ECM and bioactive molecules regulate tissue and organ generation and comprise the foundation of tissue engineering. In the present article, differences among several mammalian species regarding the placental types and classifications, phenotypes and potency of placenta-derived stem/progenitor cells, placental ECM components and current placental ECM applications were reviewed to highlight their potential clinical and biomedical relevance.
Biological biomaterials for tissue engineering purposes can be produced through tissue and/or organ decellularization. The remaining extracellular matrix (ECM) must be acellular and preserve its proteins and physical features. Placentas are organs of great interest because they are discarded after birth and present large amounts of ECM. Protocols for decellularization are tissue-specific and have not been established for canine placentas yet. This study aimed at analyzing a favorable method for decellularization of maternal and fetal portions of canine placentas. Canine placentas were subjected to ten preliminary tests to analyze the efficacy of parameters such as the type of detergents, freezing temperatures and perfusion. Two protocols were chosen for further analyses using histology, scanning electron microscopy, immunofluorescence and DNA quantification. Sodium dodecyl sulfate (SDS) was the most effective detergent for cell removal. Freezing placentas before decellularization required longer periods of incubation in different detergents. Both perfusion and immersion methods were capable of removing cells. Placentas decellularized using Protocol I (1% SDS, 5 mM EDTA, 50 mM TRIS, and 0.5% antibiotic) preserved the ECM structure better, but Protocol I was less efficient to remove cells and DNA content from the ECM than Protocol II (1% SDS, 5 mM EDTA, 0.05% trypsin, and 0.5% antibiotic).
Volumetric muscle loss causes functional weakness and is often treated with muscle grafts or implant of biomaterials. Extracellular matrices, obtained through tissue decellularization, have been widely used as biological biomaterials in tissue engineering.Optimal decellularization method varies among tissues and have significant impact on the quality of the matrix. This study aimed at comparing the efficacy of four protocols, that varied according to the temperature of tissue storage and the sequence of chemical reagents, to decellularize murine skeletal muscles. Tibialis anterior muscles were harvested from rats and were frozen at -20°C or stored at room temperature, followed by decellularization in solutions containing EDTA + Tris, SDS and Triton X-100, applied in different sequences. Samples were analyzed for macroscopic aspects, cell removal, decrease of DNA content, preservation of proteins and three-dimensional structure of the matrices. Processing protocols that started with incubation in SDS solution optimized removal of cells and DNA content and preserved the matrix ultrastructure and composition, compared to those that were initiated with EDTA + Tris. Freezing the samples before decellularization favored cell removal, regardless of the sequence of chemical reagents. Thus, to freeze skeletal muscles and to start decellularization with 1% SDS solution showed the best results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.