In the last years the chloro-s-triazine active substance terbuthylazine has been increasingly used as an herbicide and may leave residues in the environment which can be of concern. The present study aimed at developing a bioaugmentation tool based on the soil bacterium Arthrobacter aurescens strain TC1 for the remediation of terbuthylazine contaminated soils and at examining its efficacy for both soil and aquatic compartments. First, the feasibility of growing the bioaugmentation bacterium inocula on simple sole nitrogen sources (ammonium and nitrate) instead of atrazine, while still maintaining its efficiency to biodegrade terbuthylazine was shown. In sequence, the successful and quick (3 days) bioremediation efficacy of ammonium-grown A. aurescens TC1 cells was proven in a natural soil freshly spiked or four-months aged with commercial terbuthylazine at a dose 10× higher than the recommended in corn cultivation, to mimic spill situations. Ecotoxicity assessment of the soil eluates towards a freshwater microalga supported the effectiveness of the bioaugmentation tool. Obtained results highlight the potential to decontaminate soil while minimizing terbuthylazine from reaching aquatic compartments via the soil-water pathway. The usefulness of this bioaugmentation tool to provide rapid environment decontamination is particularly relevant in the event of accidental high herbicide contamination. Its limitations and advantages are discussed.
Soil improvement with hydraulic binders is currently used in practice because of the advantages of using the local soil enhancing its geotechnical properties. However, environmental issues related to quicklime applications and carbon-dioxide emissions associated to Portland cement production encouraged the development of new binders. In this work, alkaline-activated cement (AAC) synthetized by fly ash and an alkaline solution was used to stabilize silty sand. The behavior of the treated soil was evaluated performing tests on a physical model and the results were compared to laboratory data to define its compaction, strength, and stiffness properties. Those tests include nuclear density gauge measurements, light falling weight deflectometer tests, and plate load tests, whereas unconfined compression tests with unload-reload cycles and seismic wave measurements were performed at the laboratory. These tests, very common in current geotechnical practice, have proved to be also adequate to quality control and to evaluate the geomechanical properties of this material. The results at 28 days show a significant improvement given by the AAC, but still show some sensitivity to water when flooded. The comparison of results from different tests provided the evolution of stiffness with strain level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.