Given the increasing occurrence of landslides worldwide, the improvement of predictive models for landslide mapping is needed. Despite the influence of geotechnical parameters on SHALSTAB model outputs, there is a lack of research on models’ performance when considering different variables. In particular, the role of geotechnical units (i.e., areas with common soil and lithology) is understudied. Indeed, the original SHALSTAB model considers that the whole basin has homogeneous soil. This can lead to the under-or-overestimation of landslide hazards. Therefore, in this study, we aimed to investigate the advantages of incorporating geotechnical units as a variable in contrast to the original model. By using locally sampled geotechnical data, 13 slope-instability scenarios were simulated for the Jaguar creek basin, Brazil. This allowed us to verify the sensitivity of the model to different input variables and assumptions. To evaluate the model performance, we used the Success Index, Error Index, ROC curve, and a new performance index: the Detective Performance Index of Unstable Areas. The best model performance was obtained in the scenario with discretized geotechnical units’ values and the largest sample size. Results indicate the importance of properly characterizing the geotechnical units when using SHALSTAB. Hence, future applications should consider this to improve models’ predictivity.
O presente artigo realizou um levantamento dos trabalhos técnico-científicos que aplicaram o modelo SHALSTAB no mapeamento de escorregamentos no Brasil no período de 2002–2016. Inicialmente foi realizada uma breve descrição do modelo, contemplando as variáveis e alguns aspectos fundamentais para a sua aplicação. Posteriormente, o panorama espacial dos trabalhos que aplicaram o modelo foi apresentado. Foram considerados artigos, trabalhos de conclusão de curso (TCC), dissertações, teses e relatórios técnicos. Destaca-se que foi dada preferência aos artigos científicos publicados a partir de estudos realizados em TCCs, dissertações e/ou teses. O artigo foi finalizado com uma análise e representação espacial quali-quantitativa dos trabalhos que utilizaram esse modelo matemático nos estados brasileiros, abrangendo a variação metodológica de obtenção dos parâmetros adotados.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.