Cardiotocography (CTG) lacks reliability and reproducibility and these problems are believed to be overcome by computer analysis. In this article we describe a system developed for routine clinical automated CTG analysis based on a low cost personal computer. Presently the system has processed 70 ten minute tracings. Fetal heart rate baseline, acceleration--deceleration detection, and long term variability estimation were performed in a satisfactory way.
The clinical demand for tissue-engineered bone is growing due to the increase of non-union fractures and delayed healing in an aging population. Herein, we present a method combining additive manufacturing (AM) techniques with cell-derived extracellular matrix (ECM) to generate structurally well-defined bioactive scaffolds for bone tissue engineering (BTE). In this work, highly porous three-dimensional polycaprolactone (PCL) scaffolds with desired size and architecture were fabricated by fused deposition modeling and subsequently decorated with human mesenchymal stem/stromal cell (MSC)-derived ECM produced in situ. The successful deposition of MSC-derived ECM onto PCL scaffolds (PCL-MSC ECM) was confirmed after decellularization using scanning electron microscopy, elemental analysis, and immunofluorescence. The presence of cell-derived ECM within the PCL scaffolds significantly enhanced MSC attachment and proliferation, with and without osteogenic supplementation. Additionally, under osteogenic induction, PCL-MSC ECM scaffolds promoted significantly higher calcium deposition and elevated relative expression of bone-specific genes, particularly the gene encoding osteopontin, when compared to pristine scaffolds. Overall, our results demonstrated the favorable effects of combining MSC-derived ECM and AM-based scaffolds on the osteogenic differentiation of MSC, resulting from a closer mimicry of the native bone niche. This strategy is highly promising for the development of novel personalized BTE approaches enabling the fabrication of patient defect-tailored scaffolds with enhanced biological performance and osteoinductive properties. † João C. Silva and Marta S. Carvalho contributed equally to this work.
Biomaterial properties and controlled architecture of scaffolds are essential features to provide an adequate biological and mechanical support for tissue regeneration, mimicking the ingrowth tissues. In this study, a bioextrusion system was used to produce 3D biodegradable scaffolds with controlled architecture, comprising three types of constructs: (i) poly(ε-caprolactone) (PCL) matrix as reference; (ii) PCL-based matrix reinforced with cellulose nanofibers (CNF); and (iii) PCL-based matrix reinforced with CNF and hydroxyapatite nanoparticles (HANP). The effect of the addition and/or combination of CNF and HANP into the polymeric matrix of PCL was investigated, with the effects of the biomaterial composition on the constructs (morphological, thermal, and mechanical performances) being analysed. Scaffolds were produced using a single lay-down pattern of 0/90°, with the same processing parameters among all constructs being assured. The performed morphological analyses showed a satisfactory distribution of CNF within the polymer matrix and high reliability was obtained among the produced scaffolds. Significant effects on surface wettability and thermal properties were observed, among scaffolds. Regarding the mechanical properties, higher scaffold stiffness in the reinforced scaffolds was obtained. Results from the cytotoxicity assay suggest that all the composite scaffolds presented good biocompatibility. The results of this first study on cellulose and hydroxyapatite reinforced constructs with controlled architecture clearly demonstrate the potential of these 3D composite constructs for cell cultivation with enhanced mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.