Endogenous morphine has been clearly demonstrated by gas chromatography/mass spectrometry in the brain, spinal fluid, adrenal glands, and liver of mammals. To clarify the role of endogenous morphine, its release from rat brain slices was studied in vitro in the presence of high potassium concentrations, with and without calcium in the medium. The perfusate was hydrolyzed, solid phase‐extracted, and then analyzed by gas chromatography/mass spectrometry. Depolarization due to high potassium concentrations increased the release of the alkaloid manyfold with respect to the basal value, and the release was dependent on the presence of calcium in the medium. These results suggest that endogenous morphine might act as a neurotransmitter or neuromodulator in the rat CNS.
The endogenous synthesis of morphine has been clearly demonstrated throughout the phylogenesis of the nervous system of mammals and lower animals. Endogenous morphine, serving as either a neurotransmitter or neurohormone, has been demonstrated in the nervous system of both vertebrates and invertebrates. As one of the effects of exogenous morphine is the modulation of pain perception, we investigated the effects that the depletion of endogenous morphine had on nociceptive transmission. The immunoneutralization of endogenous morphine from brain extracellular spaces was obtained through the intracerebroventricular administration of af®nity puri®ed anti-morphine IgG to mice, which then underwent the hot plate test. Endogenous morphine immunoneutralization decreased thermal response latency and attenuated the anti-nociceptive effect of the mu selective agonist DAMGO in hot plate test suggesting that endogenous morphine is involved in pain modulation.
Morphine, the most used compound among narcotic analgesics, has been shown to be endogenously present in different mammalian/invertebrate normal tissues. In this study, we used mice that cannot make dopamine due to a genetic deletion of tyrosine hydroxylase specifically in dopaminergic neurons, to test the hypothesis that endogenous dopamine is necessary to endogenous morphine formation in vivo in mammalian brain. When dopamine was lacking in brain neurons, endogenous morphine was missing in brain mouse whereas it could be detected in brain from wild type rodent at a picogram range. Our data prove for the first time that endogenous dopamine is necessary to endogenous morphine formation in normal mammalian brain. Morphine synthesis appears to be originated from dopamine through L-tyrosine in normal brain tissue. Morphine synthesis is not considered to occur inside the same neuron in normal tissue; released dopamine might be transported into morphinergic neuron and further transformed into morphine. A physiological role for endogenous morphine is suggested considering that dopamine could modulate thermal threshold through endogenous morphine formation in vivo. Thus, dopamine and endogenous opiates/opioid peptides may be interconnected in the physiological processes; yet, endogenous morphine may represent a basic link of this chain.
A procedure has been presented for the quantitative determination of morphine contained in the hair of heroin addicts, by means of heat-acid hydrolysis, pre-column dansyl derivatization, straight phase liquid chromatography, and fluorescence detection. External standardization was used. Intra-assay and day-to-day variation coefficients were 5.6 and 7.8%, respectively (n = 10), when hair containing 1 ng/mg of morphine was assayed. Hair samples of 22 heroin addicts showed positive results in the range 0.08 to 15.7 ng/mg. No false positive results were found in 20 control subjects. A close correlation was shown between high performance liquid chromatography and radioimmunoassay results (y = 0.97x + 0.26)(r = 0.997, n = 15). Morphine hair content results significantly correlated with the grade of heroin use roughly estimated by means of serial determinations of morphine in urines during the last months before hair sampling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.