Giant unilamellar vesicles (GUVs) represent a versatile model system to emulate the fundamental properties and functions associated with the plasma membrane of living cells. Deformability and shape transitions of lipid vesicles are closely linked to the mechanical properties of the bilayer membrane itself and are typically difficult to control under physiological conditions. Here, we developed a protocol to form cell-sized vesicles from an azobenzene-containing phosphatidylcholine (azo-PC), which undergoes photoisomerization on irradiation with UV-A and visible light. Photoswitching within the photolipid vesicles enabled rapid and precise control of the mechanical properties of the membrane. By varying the intensity and dynamics of the optical stimulus, controlled vesicle shape changes such as budding transitions, invagination, pearling, or the formation of membrane tubes were achieved. With this system, we could mimic the morphology changes normally seen in cells, in the absence of any molecular machines associated with the cytoskeleton. Furthermore, we devised a mechanism to utilize photoswitchable lipid membranes for storing mechanical energy and then releasing it on command as locally usable work.
Controlling lateral interactions between lipid molecules in a bilayer membrane to guide membrane organization and domain formation is a key factor for studying and emulating membrane functionality in synthetic biological systems. Here, we demonstrate an approach to reversibly control lipid organization, domain formation, and membrane stiffness of phospholipid bilayer membranes using the photoswitchable phospholipid azo-PC. azo-PC contains an azobenzene group in the sn2 acyl chain that undergoes reversible photoisomerization on illumination with UV-A and visible light. We demonstrate that the concentration of the photolipid molecules and also the assembly and disassembly of photolipids into lipid domains can be monitored by UV−vis spectroscopy because of a blue shift induced by photolipid aggregation.
Supported lipid bilayer (SLB) membranes are key elements to mimic membrane interfaces on a planar surface. Here, we demonstrate that azobenzene photolipids (azo-PC) form fluid, homogeneous SLBs. Diffusion properties of azo-PC within SLBs were probed by fluorescence microscopy and fluorescence recovery after photobleaching. At ambient conditions, we find that the trans-to-cis isomerization causes an increase of the diffusion constant by a factor of two. Simultaneous excitation with two wavelengths and variable intensities furthermore allows to adjust the diffusion constant D continuously. Xray reflectometry and small-angle scattering measurements reveal that membrane photoisomerization results in a bilayer thickness reduction of ∼0.4 nm (or 10%). While thermally induced back-switching is not observed, we find that the trans bilayer fluidity is increasing with higher temperatures. This change in diffusion constant is accompanied by a red-shift in the absorption spectra. Based on these results, we suggest that the reduced diffusivity of trans-azo-PC is controlled by intermolecular interactions that also give rise to Haggregate formation in bilayer membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.