Glioblastoma (GBM) is a primary brain tumor whose prognosis is inevitably dismal, leading patients to death in about 15 months from diagnosis. Tumor cells in the mass of the neoplasm are in continuous exchange with cells of the stromal microenvironment, through the production of soluble molecules, among which chemokines play prominent roles. CXCL14 is a chemokine with a pro-tumor role in breast and prostate carcinoma, where it is secreted by cancer associated fibroblasts, and contributes to tumor growth and invasion. We previously observed that CXCL14 expression is higher in GBM tissues than in healthy white matter. Here, we study the effects of exogenously supplemented CXCL14 on key tumorigenic properties of human GBM cell lines. We show that CXCL14 enhances the migration ability and the proliferation of U87MG and LN229 GBM cell lines. None of these effects was affected by the use of AMD3100, an inhibitor of CXCR4 receptor, suggesting that the observed CXCL14 effects are not mediated by this receptor. We also provide evidence that CXCL14 enhances the sphere-forming ability of glioblastoma stem cells, considered the initiating cells, and is responsible for tumor onset, growth and recurrence. In support of our in vitro results, we present data from several GBM expression datasets, demonstrating that CXCL14 expression is inversely correlated with overall survival, that it is enriched at the leading edge of the tumors and in infiltrating tumor areas, and it characterizes mesenchymal and NON G-CIMP tumors, known to have a particularly bad prognosis. Overall, our results point to CXCL14 as a protumorigenic chemokine in GBM.
The most widely accepted hypothesis for the development of glioblastoma suggests that glioblastoma stem-like cells (GSCs) are crucially involved in tumor initiation and recurrence as well as in the occurrence of chemo- and radio-resistance. Mesenchyme homeobox 2 (MEOX2) is a transcription factor overexpressed in glioblastoma, whose expression is negatively correlated with patient survival. Starting from our observation that MEOX2 expression is strongly enhanced in six GSC lines, we performed shRNA-mediated knock-down experiments in two different GSC lines and found that MEOX2 depletion resulted in the inhibition of cell growth and sphere-forming ability and an increase in apoptotic cell death. By a deep transcriptome analysis, we identified a core group of genes modulated in response to MEOX2 knock-down. Among these genes, the repressed ones are largely enriched in genes involved in the hypoxic response and glycolytic pathway, two strictly related pathways that contribute to the resistance of high-grade gliomas to therapies. An in silico study of the regulatory regions of genes differentially expressed by MEOX2 knock-down revealed that they mainly consisted of GC-rich regions enriched for Sp1 and Klf4 binding motifs, two main regulators of metabolism in glioblastoma. Our results show, for the first time, the involvement of MEOX2 in the regulation of genes of GSC metabolism, which is essential for the survival and growth of these cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.