Background-The aim was to relate distinct scar distributions found in nonischemic cardiomyopathy with ventricular tachycardia (VT) morphology, late potential distribution, ablation strategy, and outcome. Methods and Results-Eighty-seven patients underwent catheter ablation for drug-refractory VT. Based on endocardial unipolar voltage, 44 were classified as predominantly anteroseptal and 43 as inferolateral. Anteroseptal patients more frequently fulfilled diagnostic criteria for dilated cardiomyopathy (64% versus 36%), associated with more extensive endocardial unipolar scar (41 [22-83] versus 9 [1-29] cm 2 ; P<0.001). Left inferior VT axis was predictive of anteroseptal scar (positive predictive value, 100%) and right superior axis for inferolateral (positive predictive value, 89%). Late potentials were infrequent in the anteroseptal group (11% versus 74%; P<0.001). Epicardial late potentials were common in the inferolateral group (81% versus 4%; P<0.001) and correlated with VT termination sites (κ=0.667; P=0.014), whereas no anteroseptal patient had an epicardial VT termination (P<0.001). VT recurred in 44 patients (51%) during a median follow-up of 1.5 years. Anteroseptal scar was associated with higher VT recurrence (74% versus 25%; log-rank P<0.001) and redo procedure rates (59% versus 7%; log-rank P<0.001). After multivariable analysis, clinical predictors of VT recurrence were electrical storm (hazard ratio, 3.211; P=0.001) and New York Heart Association class (hazard ratio, 1.608; P=0.018); the only procedural predictor of VT recurrence was anteroseptal scar pattern (hazard ratio, 5.547; P<0.001). Conclusions-Unipolar low-voltage distribution in nonischemic cardiomyopathy allows categorization of scar pattern as inferolateral, often requiring epicardial ablation mainly based on late potentials, and anteroseptal, which frequently involves an intramural septal substrate, leading to a higher VT recurrence. (Circ Arrhythm Electrophysiol. 2014;7:414-423.)
Background-The mechanism of cardiac resynchronization therapy (CRT)-induced proarrhythmia remains unknown. We postulated that pacing from a left ventricular (LV) lead positioned on epicardial scar can facilitate re-entrant ventricular tachycardia. The aim of this study was to investigate the relationship between CRT-induced proarrhythmia and LV lead location within scar. Methods and Results-Twenty-eight epicardial and 63 endocardial maps, obtained from 64 CRT patients undergoing ventricular tachycardia ablation, were analyzed. A positive LV lead/scar relationship, defined as a lead tip positioned on scar/border zone, was determined by overlaying fluoroscopic projections with LV electroanatomical maps. CRTinduced proarrhythmia occurred in 8 patients (12.5%). They all presented early with electrical storm (100% versus 39% of patients with no proarrhythmia; P<0.01), requiring temporary biventricular pacing discontinuation in half of cases. They more frequently presented with heart failure/cardiogenic shock (50% versus 7%; P<0.01), requiring intensive care management. Ventricular tachycardia was re-entrant in all. The LV lead location within epicardial scar was significantly more frequent in the proarrhythmia group (60% versus 9% P=0.03 on epicardial bipolar scar, 80% versus 17% P=0.02 on epicardial unipolar scar, and 80% versus 17% P=0.02 on any-epicardial scar). Ablation was performed within epicardial scar, close to the LV lead, and allowed CRT reactivation in all patients. Conclusions-CRT-induced proarrhythmia presented early with electrical storm and was associated with an LV lead positioning within epicardial scar. Catheter ablation allowed for resumption of biventricular stimulation in all patients. (Circ Arrhythm Electrophysiol. 2014;7:1064-1069.)
Catheter ablation of ventricular tachycardia (VT) currently has an important role in the treatment of incessant ventricular tachycardia and reduction of the number of episodes of recurrent ventricular tachycardia. Conventional mapping techniques require ongoing tachycardia and haemodynamic stability during the procedure. However, in many patients with scar-related ventricular tachycardia, non-inducibility of clinical tachycardia, poor induction reproducibility, haemodynamic instability, and multiple ventricular tachycardias with frequent spontaneous changes of morphology, preclude tachycardia mapping. To overcome these limitations, new strategies for mapping and ablation in sinus rhythm (SR) - substrate mapping strategies - have been developed and are currently used by many centres. This review summarizes the progresses recently achieved in the ablative treatment of ventricular tachycardia using a substrate mapping approach in patients with structural heart disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.