Quasiclassical trajectory and quantum-mechanical scattering calculations are reported for the O((3)P) + H(2)(X (1)Sigma(g) (+);upsilon = 1-3,j = 0)-->OH(X (2)Pi) + H((2)S) reaction at energies close to the reaction threshold. The dynamics of the reaction have been investigated for zero total angular momentum using the lowest (3)A" potential-energy surface developed by Rogers et al. [J. Phys. Chem. A 104, 2308 (2000)] and its recent extensions by Brandao et al. [J. Chem. Phys. 121, 8861 (2004)] which provide an improved description of the van der Waals interaction. Good agreement is observed for this system between quasiclassical and quantal results for incident kinetic energies above the tunneling regime. Quantum-mechanical calculations also confirm recent theoretical predictions of a strong collision-energy dependence of the OH(v(') = 0)OH(v' = 1) product branching ratio in the O((3)P) + H(2)(v = 1) reaction, which explains the differences observed in OH vibrational populations between experiments using different O((3)P) sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.