This paper studies the discretization of fractional operators by means of advanced clustering methods. The Grünwald–Letnikov fractional operator is approximated by series generated by the Euler, Tustin and generalized mean. The series for different fractional orders form the objects to be assessed. For this purpose, the several distances associated with the hierarchical clustering and multidimensional scaling computational techniques are tested. The Arc-cosine distance and the 3-dim multidimensional scaling produce good results. The visualization of the graphical representations allows a better understanding of the properties embedded in each type of approximation of the fractional operators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.