The adult brain is made up of anatomically and functionally distinct regions with specific neuronal compositions. At the root of this neuronal diversity are neural stem and progenitor (NPCs) cells that produce many neurons throughout embryonic development. During development, NPCs switch from initial expanding divisions to neurogenic divisions, which marks the onset of neurogenesis. Here, we aimed to understand when NPCs switch division modes to generate the first neurons in the anterior-most part of the zebrafish brain, the telencephalon. To this end, we used the deep learning-based segmentation method Cellpose and clonal analysis of individual NPCs to assess production of neurons by NPCs in the first 24 hours of zebrafish telencephalon development. Our results provide a quantitative atlas detailing the production of telencephalic neurons and NPC division modes between 14 and 24 hours post-fertilization. We find that within this timeframe, the switch to neurogenesis is gradual, with considerable heterogeneity in individual NPC neurogenic potential and division rates. This quantitative characterization of initial neurogenesis in the zebrafish telencephalon establishes a basis for future studies aimed at illuminating the molecular mechanisms and regulators of early neurogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.