Over the years, induction machines (IMs) have become key components in industry applications as mechanical power sources (working as motors) as well as electrical power sources (working as generators). Unexpected breakdowns in these components can lead to unscheduled down time and consequently to large economic losses. As breakdown of IMs for failure study is not economically feasible, several IM computer models under faulty conditions have been developed to investigate the characteristics of faulty machines and have allowed reducing the number of destructive tests. This paper provides a review of the available techniques for faulty IMs modelling. These models can be categorised as models based on electrical circuits, on magnetic circuits, models based on numerical methods and the recently proposed in the technical literature hybrid models or models based on finite element method (FEM) analytical techniques. A general description of each type of model is given with its main benefits and drawbacks in terms of accuracy, running times and ability to reproduce a given fault.
Induction machines are essential components of many industrial installations and, therefore, their faults must be detected early. Fault detection using current spectrum analysis is attracting an increasing interest as a condition-based monitoring technique. However, its use to detect rotor asymmetries in high-power induction machines, which operate at very low slip, is particularly challenging, due to the closeness of the characteristic fault harmonics to the fundamental component, separated only a few mHz. Their reliable detection in harsh industrial environments requires a very high spectral resolution, that is, long acquisition times and a huge number of current samples, what hinders its implementation on embedded, online devices with limited computing resources. To address this problem, this paper presents a novel combination of diagnostic techniques, the use of the rectified current as diagnostic signal, and the Goertzel algorithm as signal processing tool. This unique combination allows for an optimized implementation ot the Goertzel algorithm, which provides a high spectral resolution in the full load range of the machine, with a low computational cost and a negligible memory footprint. This proposal is validated experimentally with the fault diagnosis of a high-power mediumvoltage industrial motor.
Since it is not efficient to physically study many machine failures, models of faulty induction machines (IMs) have attracted a rising interest. These models must be accurate enough to include fault effects and must be computed with relatively low resources to reproduce different fault scenarios. Moreover, they should run in real time to develop online condition-monitoring (CM) systems. Hybrid finite element method (FEM)-analytical models have been recently proposed for fault diagnosis purposes since they keep good accuracy, which is widely accepted, and they can run in real-time simulators. However, these models still require the full simulation of the FEM model to compute the parameters of the analytical model for each faulty scenario with its corresponding computing needs. To address these drawbacks (large computing power and memory resources requirements) this paper proposes sparse identification techniques in combination with the trigonometric interpolation polynomial for the computation of IM model parameters. The proposed model keeps accuracy similar to a FEM model at a much lower computational effort, which could contribute to the development and to the testing of condition-monitoring systems. This approach has been applied to develop an IM model under static eccentricity conditions, but this may extend to other fault types.
Induction machines (IMs) are a critical component of many industrial processes, and their failure can cause large economic losses. Condition-based maintenance systems (CBMs) that are capable of detecting their failures at an incipient stage can reduce these risks by continuously monitoring the IMs’ condition. The development and reliable operations of CBMs systems require rapid modeling of the faulty IM. Due to the fault-induced IM asymmetries, these models are much more complex than those used for a healthy IM. In particular, a mixed eccentricity fault (static and dynamic), which can degenerate into rubbing and destruction of the rotor, produces a non-uniform IM air gap that is different for each rotor position, which makes its very difficult to calculate the IM’s inductance matrix. In this work, a new analytical model of an eccentric IM is presented. It is based on the winding tensor approach, which allows a clear separation between the air gap and winding-related faults. Contrary to previous approaches, where complex expressions have been developed for obtaining mutual inductances between conductors and windings of an eccentric IM, a conformal transformation is proposed in this work, which allows using the simple inductance expressions of a healthy IM. This novel conformal winding tensor approach (CWFA) is theoretically explained and validated with the diagnosis of two commercial IMs with a mixed eccentricity fault.
This contribution describes the change in methodology introduced in the subject Electrical Machines within the Industrial Technologies Engineering Degree at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.