Electrospinning is a versatile technique to produce nano/microscale fibrous scaffolds for tissue engineering and drug delivery applications. This research aims to demonstrate that hyaluronic acid-chitosan (HA-CS) nanoparticles can be electrospun together with polycaprolactone (PCL) and gelatine (Ge) fibres using a portable device to create scaffolds for tissue repair. A range of polymer solutions of PCL-gelatine at different weight/volume concentrations and ratios were electrospun and characterised. Fibre–cell interaction (F11 cells) was evaluated based on cell viability and proliferation and, from here, a few polymer blends were electrospun into random or aligned fibre arrangements. HA-CS nanoparticles were synthesised, characterised, and used to functionalise electrospun fibres (8% w/v at 70 PCL:30 Ge), which were chosen based on cell viability. Different concentrations of HA-CS nanoparticles were tested to determine cytotoxicity. A single dosage (1 × 10−2 mg/mL) was associated with higher cell proliferation compared with the cell-only control. This nanoparticle concentration was embedded into the electrospun fibres as either surface modification or blend. Fibres with blended NPs delivered a higher cell viability than unmodified fibres, while NP-coated fibres resulted in a higher cell proliferation (72 h) than the NP-blended ones. These biocompatible scaffolds allow cell attachment, maintain fibre arrangement, promote directional growth and yield higher cell viability.
Background The manufacturing of any standard mechanical ventilator cannot rapidly be upscaled to several thousand units per week, largely due to supply chain limitations. The aim of this study was to design, verify and perform a pre-clinical evaluation of a mechanical ventilator based on components not required for standard ventilators, and that met the specifications provided by the Medicines and Healthcare Products Regulatory Agency (MHRA) for rapidly-manufactured ventilator systems (RMVS). Methods The design utilises closed-loop negative feedback control, with real-time monitoring and alarms. Using a standard test lung, we determined the difference between delivered and target tidal volume (VT) at respiratory rates between 20 and 29 breaths per minute, and the ventilator's ability to deliver consistent VT during continuous operation for >14 days (RMVS specification). Additionally, four anaesthetised domestic pigs (3 male-1 female) were studied before and after lung injury to provide evidence of the ventilator's functionality, and ability to support spontaneous breathing. Findings Continuous operation lasted 23 days, when the greatest difference between delivered and target VT was 10% at inspiratory flow rates > 825 mL/s. In the pre-clinical evaluation, the VT difference was -1 (-90 to 88) mL [mean (LoA)], and positive end-expiratory pressure (PEEP) difference was -2 (-8 to 4) cmH 2 O. VT delivery being triggered by pressures below PEEP demonstrated spontaneous ventilation support. Interpretation The mechanical ventilator presented meets the MHRA therapy standards for RMVS and, being based on largely available components, can be manufactured at scale. Funding Work supported by Wellcome/EPSRC Centre for Medical Engineering,King’s Together Fund and Oxford University.
Traumatic injuries are a major cause of morbidity and mortality worldwide; however, there is limited research on microvascular traumatic injuries. To address this gap, this research aims to develop and optimise an in vitro construct for traumatic injury research at the microvascular level. Tissue engineering constructs were created using a range of polymers (collagen, fibrin, and gelatine), solvents (PBS, serum-free endothelial media, and MES/NaCl buffer), and concentrations (1–5% w/v). Constructs created from these hydrogels and HUVECs were evaluated to identify the optimal composition in terms of cell proliferation, adhesion, migration rate, viability, hydrogel consistency and shape retention, and tube formation. Gelatine hydrogels were associated with a lower cell adhesion, whereas fibrin and collagen ones displayed similar or better results than the control, and collagen hydrogels exhibited poor shape retention; fibrin scaffolds, particularly at high concentrations, displayed good hydrogel consistency. Based on the multipronged evaluation, fibrin hydrogels in serum-free media at 3 and 5% w/v were selected for further experimental work and enabled the formation of interconnected capillary-like networks. The networks formed in both hydrogels displayed a similar architecture in terms of the number of segments (10.3 ± 3.21 vs. 9.6 ± 3.51) and diameter (8.6446 ± 3.0792 μm vs. 7.8599 ± 2.3794 μm).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.