The efficacy of computed tomography (CT) screening for early lung cancer detection in heavy smokers is currently being tested by a number of randomized trials. Critical issues remain the frequency of unnecessary treatments and impact on mortality, indicating the need for biomarkers of aggressive disease. We explored microRNA (miRNA) expression profiles of lung tumors, normal lung tissues and plasma samples from cases with variable prognosis identified in a completed spiral-CT screening trial with extensive follow-up. miRNA expression patterns significantly distinguished: (i) tumors from normal lung tissues, (ii) tumor histology and growth rate, (iii) clinical outcome, and (iv) year of lung cancer CT detection. Interestingly, miRNA profiles in normal lung tissues also displayed remarkable associations with clinical features, suggesting the influence of a permissive microenvironment for tumor development. miRNA expression analyses in plasma samples collected 1-2 y before the onset of disease, at the time of CT detection and in disease-free smokers enrolled in the screening trial, resulted in the generation of miRNA signatures with strong predictive, diagnostic, and prognostic potential (area under the ROC curve ≥ 0.85). These signatures were validated in an independent cohort from a second randomized spiral-CT trial. These results indicate a role for miRNAs in lung tissues and plasma as molecular predictors of lung cancer development and aggressiveness and have theoretical and clinical implication for lung cancer management.circulating biomarkers | risk prediction | miRNA ratios D espite recent advances in the management of resected lung cancer and the use of molecular targeted agents in specific clinical settings, the cure rate of non-small-cell lung cancer (NSCLC) remains low due to drug-refractory recurrent and metastatic disease.Early detection studies using chest X-rays (1) and, more recently, spiral-computed tomography (CT; refs. 2 and 3), have reported a significant increase in the number of lung cancer diagnoses, without apparent major decrease in advanced cancers or reduction of mortality in smokers (4). A recent press release (http://www.cancer.gov) reporting the findings of the largest randomized trial comparing spiral-CT to chest X-rays showed a 6.9% reduction in all-cause mortality (−20.3% lung cancer mortality), but a full report of the results of this trial is not yet available. A likely explanation of the limited impact of CT screening on mortality is that perhaps not all aggressive lung tumors arise from identifiable slow-growing precursors, suggesting a possible paradigm shift in our understanding of the natural history of lung cancer (5, 6). In this respect, the identification of biologic and molecular features of indolent and aggressive disease would be critical to define clinically useful predictors of high-risk lesions. microRNAs (miRNAs) are small RNA molecules with regulatory function and marked tissue specificity that can modulate multiple targets belonging to several pathways. They are fr...
A B S T R A C T PurposeRecent screening trial results indicate that low-dose computed tomography (LDCT) reduces lung cancer mortality in high-risk patients. However, high false-positive rates, costs, and potential harms highlight the need for complementary biomarkers. The diagnostic performance of a noninvasive plasma microRNA signature classifier (MSC) was retrospectively evaluated in samples prospectively collected from smokers within the randomized Multicenter Italian Lung Detection (MILD) trial. Patients and MethodsPlasma samples from 939 participants, including 69 patients with lung cancer and 870 disease-free individuals (n ϭ 652, LDCT arm; n ϭ 287, observation arm) were analyzed by using a quantitative reverse transcriptase polymerase chain reaction-based assay for MSC. Diagnostic performance of MSC was evaluated in a blinded validation study that used prespecified risk groups. ResultsThe diagnostic performance of MSC for lung cancer detection was 87% for sensitivity and 81% for specificity across both arms, and 88% and 80%, respectively, in the LDCT arm. For all patients, MSC had a negative predictive value of 99% and 99.86% for detection and death as a result of disease, respectively. LDCT had sensitivity of 79% and specificity of 81% with a false-positive rate of 19.4%. Diagnostic performance of MSC was confirmed by time dependency analysis. Combination of both MSC and LDCT resulted in a five-fold reduction of LDCT false-positive rate to 3.7%. MSC risk groups were significantly associated with survival ( 1 2 ϭ 49.53; P Ͻ .001). ConclusionThis large validation study indicates that MSC has predictive, diagnostic, and prognostic value and could reduce the false-positive rate of LDCT, thus improving the efficacy of lung cancer screening.
Baseline assessment of plasma DNA level does not improve the accuracy of lung cancer screening by spiral CT in heavy smokers. Higher levels of plasma DNA at surgery might represent a risk factor for aggressive disease.
Lung cancer represents the leading cause of cancer-related death in developed countries. Despite the advances in diagnostic and therapeutic techniques, the 5-year survival rate remains low. The research for novel therapies directed to biological targets has modified the therapeutic approach, but the frequent engagement of resistance mechanisms and the substantial costs, limit the ability to reduce lung cancer mortality. MicroRNAs (miRNAs) are small noncoding RNAs with known regulatory functions in cancer initiation and progression. In this study we found that mir-660 expression is downregulated in lung tumors compared with adjacent normal tissues and in plasma samples of lung cancer patients with poor prognosis, suggesting a potential functional role of this miRNA in lung tumorigenesis. Transient and stable overexpression of mir-660 using miRNA mimics reduced migration, invasion, and proliferation properties and increased apoptosis in p53 wild-type lung cancer cells (NCI-H460, LT73, and A549). Furthermore, stable overexpression using lentiviral vectors in NCI-H460 and A549 cells inhibited tumor xenograft growth in immunodeficient mice (95 and 50% reduction compared with control, respectively), whereas the effects of mir-660 overexpression were absent in H1299, a lung cancer cell line lacking p53 locus, both in in vitro and in vivo assays. We identified and validated mouse double minute 2 (MDM2) gene, a key regulator of the expression and function of p53, as a new direct target of mir-660. In addition, mir-660 expression reduced both mRNA and protein expression of MDM2 in all cell lines and stabilized p53 protein levels resulting in an upregulation of p21WAF1/CIP1 in p53 wild-type cells. Our finding supports that mir-660 acts as a tumor suppressor miRNA and we suggest the replacement of mir-660 as a new therapeutic approach for p53 wild-type lung cancer treatment.
miRNAs play a central role in the complex signaling network of cancer cells with the tumor microenvironment. Little is known on the origin of circulating miRNAs and their relationship with the tumor microenvironment in lung cancer. Here, we focused on the cellular source and relative contribution of different cell types to circulating miRNAs composing our risk classifier of lung cancer using in vitro/in vivo models and clinical samples. A cell‐type specific expression pattern and topography of several miRNAs such as mir‐145 in fibroblasts, mir‐126 in endothelial cells, mir‐133a in skeletal muscle cells was observed in normal and lung cancer tissues. Granulocytes and platelets are the major contributors of miRNAs release in blood. miRNAs modulation observed in plasma of lung cancer subjects was consistent with de‐regulation of the same miRNAs observed during immunosuppressive conversion of immune cells. In particular, activated neutrophils showed a miRNA profile mirroring that observed in plasma of lung cancer subjects. Interestingly mir‐320a secreted by neutrophils of high‐risk heavy‐smokers promoted an M2‐like protumorigenic phenotype through downregulation of STAT4 when shuttled into macrophages. These findings suggest a multifactorial and nonepithelial cell‐autonomous origin of circulating miRNAs associated with risk of lung cancer and that circulating miRNAs may act in paracrine signaling with causative role in lung carcinogenesis and immunosuppression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.