It is now recognized that lipids and proteins in cellular membranes are not homogenously distributed. A high degree of membrane order is the biophysical hallmark of cholesterol-enriched lipid rafts, which may induce the lateral sorting of proteins within the membrane. Here we describe a quantitative fluorescence microscopy technique for imaging localized lipid environments and measuring membrane lipid order in live and fixed cells, as well as in intact tissues. The method is based on the spectral ratiometric imaging of the polarity-sensitive membrane dyes Laurdan and di-4-ANEPPDHQ. Laurdan typically requires multiphoton excitation, making it suitable for the imaging of tissues such as whole, living zebrafish embryos, whereas di-4-ANEPPDHQ imaging can be achieved with standard confocal microscopes. This approach, which takes around 4 h, directly examines the organization of cellular membranes and is distinct from alternative approaches that infer membrane order by measuring probe partitioning or dynamics.
Lipid droplets (LDs) are intracellular organelles that provide fatty acids (FAs) to cellular processes including synthesis of membranes and production of metabolic energy. While known to move bidirectionally along microtubules (MTs), the role of LD motion and whether it facilitates interaction with other organelles are unclear. Here we show that during nutrient starvation, LDs and mitochondria relocate on detyrosinated MT from the cell centre to adopt a dispersed distribution. In the cell periphery, LD–mitochondria interactions increase and LDs efficiently supply FAs for mitochondrial beta-oxidation. This cellular adaptation requires the activation of the energy sensor AMPK, which in response to starvation simultaneously increases LD motion, reorganizes the network of detyrosinated MTs and activates mitochondria. In conclusion, we describe the existence of a specialized cellular network connecting the cellular energetic status and MT dynamics to coordinate the functioning of LDs and mitochondria during nutrient scarcity.
The authors employed photoactivatable localization microscopy (PALM) and direct stochastic optical reconstruction microscopy (dSTORM) imaging and image analysis based on Ripley's K-function to quantify the distribution and heterogeneity of proteins at the cell plasma membrane. The membrane targeting sequence of the N-terminal region of the T cell receptor-pathway kinase Lck fused to the photo-convertible fluorescent protein tdEos (Lck(N10)-tdEos), clusters into sub-100 nm regions which cover approximately 7% of the cell surface. 2-channel PALM imaging of Lck(N10)-tdEos and the N-terminus of the kinase Src (Src(N15)-PS-CFP2) are demonstrated. Finally, T cell microclusters at the immune synapse are imaged at super-resolution using dSTORM, showing that conventional TIRF images contain unresolved, small clusters. These methods are generally applicable to other cell and fluorophore systems to quantify 2-D molecular clustering at nanometer scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.