The use of antibacterial silver nanomaterials in consumer products ranging from textiles to toys has given rise to concerns over their environmental toxicity. These materials, primarily nanoparticles, have been shown to be toxic to a wide range of organisms; thus methods and materials that reduce their environmental toxicity while retaining their useful antibacterial properties can potentially solve this problem. Here we demonstrate that silver nanocubes display a lower toxicity toward the model plant species Lolium multiflorum while showing similar toxicity toward other environmentally relevant and model organisms (Danio rerio and Caenorhabditis elegans) and bacterial species (Esherichia coli, Bacillus cereus, and Pseudomonas aeruginosa) compared to quasi-spherical silver nanoparticles and silver nanowires. More specifically, in the L. multiflorum experiments, the roots of silver nanocube treated plants were 5.3% shorter than the control, while silver nanoparticle treated plant roots were 39.6% shorter than the control. The findings here could assist in the future development of new antibacterial products that cause less environmental toxicity after their intended use.
Most studies of bacterial exposure to environmental contaminants focus on acute treatments; however, the impacts of single, high-dose exposures on microbial communities may not readily be extended to the more likely scenario of chronic, lowdose contaminant exposures. Here, in a year-long, wetland mesocosm experiment, we compared microbial community responses to pulse (single 450 mg dose of silver) and chronic (weekly 8.7 mg doses of silver for 1 year) silver nanoparticle (Ag 0 NP) treatments, as well as a chronic treatment of "aged" sulfidized silver nanoparticles (Ag 2 S NPs). While mesocosms exposed to Ag 2 S NPs never differed significantly from the controls, both Ag 0 NP treatments exhibited reduced microbial diversity and altered community composition; however, the effects differed in timing, duration, and magnitude. Microbial community-level impacts in the acute Ag 0 NP treatment were apparent only within the first weeks and then converged on the control mesocosm composition, while chronic exposure effects were observed several months after exposures began, likely due to interactive effects of nanoparticle toxicity and winter environmental conditions. Notably, there was a high level of overlap in the taxa which exhibited significant declines (>10×) in both treatments, suggesting a conserved toxicity response for both pulse and chronic exposures. Thus, this research suggests that complex, but short-term, acute toxicological studies may provide critical, costeffective insights into identifying microbial taxa sensitive to long-term chronic exposures to Ag NPs.
The use of transgenic crops has become increasingly common in the United States over the last several decades. Increasing evidence suggests that DNA may be protected from enzymatic digestion and acid hydrolysis in the digestive tract, suggesting that crop-derived transgenes may enter into wastewater treatment plants (WWTPs) intact. Given the historical use of antibiotic resistance genes as selection markers in transgenic crop development, it is important to consider the fate of these transgenes. Herein we detected and quantified crop-derived transgenes in WWTPs. All viable US WWTP samples were found to contain multiple gene targets (p35, nos, bla and nptII) at significantly higher levels than control samples. Control wastewater samples obtained from France, where transgenic crops are not cultivated, contained significantly fewer copies of the nptII gene than US activated and digester sludges. No significant differences were measured for the bla antibiotic resistance gene (ARG). In addition, a nested PCR (polymerase chain reaction) assay was developed that targeted the bla ARG located in regions flanked by the p35 promoter and nos terminator. Overall this work suggests that transgenic crops may have provided an environmental source of nptII; however, follow-up studies are needed to ascertain the viability of these genes as they exit WWTPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.