What is the central question of this study? Does manipulation of the work of breathing during high-intensity exercise alter respiratory and locomotor muscle blood flow? What is the main finding and its importance? We found that when the work of breathing was reduced during exercise, respiratory muscle blood flow decreased, while locomotor muscle blood flow increased. Conversely, when the work of breathing was increased, respiratory muscle blood flow increased, while locomotor muscle blood flow decreased. Our findings support the theory of a competitive relationship between locomotor and respiratory muscles during intense exercise. Manipulation of the work of breathing (WOB) during near-maximal exercise influences leg blood flow, but the effects on respiratory muscle blood flow are equivocal. We sought to assess leg and respiratory muscle blood flow simultaneously during intense exercise while manipulating WOB. Our hypotheses were as follows: (i) increasing the WOB would increase respiratory muscle blood flow and decrease leg blood flow; and (ii) decreasing the WOB would decrease respiratory muscle blood flow and increase leg blood flow. Eight healthy subjects (n = 5 men, n = 3 women) performed a maximal cycle test (day 1) and a series of constant-load exercise trials at 90% of peak work rate (day 2). On day 2, WOB was assessed with oesophageal balloon catheters and was increased (via resistors), decreased (via proportional assist ventilation) or unchanged (control) during the trials. Blood flow was assessed using near-infrared spectroscopy optodes placed over quadriceps and the sternocleidomastoid muscles, coupled with a venous Indocyanine Green dye injection. Changes in WOB were significantly and positively related to changes in respiratory muscle blood flow (r = 0.73), whereby increasing the WOB increased blood flow. Conversely, changes in WOB were significantly and inversely related to changes in locomotor blood flow (r = 0.57), whereby decreasing the WOB increased locomotor blood flow. Oxygen uptake was not different during the control and resistor trials (3.8 ± 0.9 versus 3.7 ± 0.8 l min , P > 0.05), but was lower on the proportional assist ventilator trial (3.4 ± 0.7 l min , P < 0.05) compared with control. Our findings support the concept that respiratory muscle work significantly influences the distribution of blood flow to both respiratory and locomotor muscles.
The aim of the present study was to determine whether lung volume recruitment (LVR) acutely increases respiratory system compliance (Crs) in individuals with severe respiratory muscle weakness (RMW).Individuals with RMW resulting from neuromuscular disease or quadriplegia (n=12) and healthy controls (n=12) underwent pulmonary function testing and the measurement of Crs at baseline, immediately after, 1 h after and 2 h after a single standardised session of LVR. The LVR session involved 10 consecutive supramaximal lung inflations with a manual resuscitation bag to the highest tolerable mouth pressure or a maximum of 50 cmH2O. Each LVR inflation was followed by brief breath-hold and a maximal expiration to residual volume.At baseline, individuals with RMW had lower Crs than controls (37±5 cmH2O versus 109±10 mL·cmH2O−1, p<0.001). Immediately after LVR, Crs increased by 39.5±9.8% to 50±7 mL·cmH2O−1 in individuals with RMW (p<0.05), while no significant change occurred in controls (p=0.23). At 1 h and 2 h post-treatment, there were no within-group differences in Crs compared to baseline (all p>0.05). LVR had no significant effect on measures of pulmonary function at any time point in either group (all p>0.05). During inflations, mean arterial pressure decreased significantly relative to baseline by 10.4±2.8 mmHg and 17.3±3.0 mmHg in individuals with RMW and controls, respectively (both p<0.05).LVR acutely increases Crs in individuals with RMW. However, the high airway pressures during inflations cause reductions in mean arterial pressure that should be considered when applying this technique.
Reducing the work of breathing or eliminating exercise-induced arterial hypoxaemia (EIAH) during exercise decreases the severity of quadriceps fatigue in men. Women have a greater work of breathing during exercise, dedicate a greater fraction of whole-body V̇O2 towards their respiratory muscles, and demonstrate EIAH, suggesting women may be especially susceptible to quadriceps fatigue. Healthy subjects (8 male, 8 female) completed three constant load exercise tests over 4 days. During the first (control) test, subjects exercised at ∼85% of maximum while arterial blood gases and work of breathing were assessed. Subsequent constant load exercise tests were iso-time and iso-work rate, but with EIAH prevented by inspiring hyperoxic gas or work of breathing reduced via a proportional assist ventilator (PAV). Quadriceps fatigue was assessed by measuring force in response to femoral nerve stimulation. For both sexes, quadriceps force was equally reduced after the control trial (-27 ± 2% baseline) and was attenuated with hyperoxia and PAV (-18 ± 1 and -17 ± 2% baseline, P < 0.01, respectively), with no sex difference. EIAH was similar between the sexes, and regardless of sex, subjects with the lowest oxyhaemoglobin saturation during the control test had the greatest quadriceps fatigue attenuation with hyperoxia (r = 0.79, P < 0.0001). For the PAV trial, despite reducing the work of breathing to a greater degree in men (men: 60 ± 5, women: 75 ± 6% control, P < 0.05), the attenuation of quadriceps fatigue was similar between the sexes (36 ± 4 vs. 37 ± 7%). Owing to a greater relative V̇O2 of the respiratory muscles in women, less of a change in work of breathing is needed to reduce quadriceps fatigue.
Key points The female diaphragm fatigues at a slower rate compared to that of males, with blunted cardiovascular consequences (i.e. inspiratory muscle metaboreflex). It is unclear if these findings are a function of relative or absolute diaphragmatic work. We asked if sex differences in diaphragm fatigue and the inspiratory muscle metaboreflex persisted during inspiratory loading performed at equal absolute intensities. We found that matching men and women for absolute diaphragmatic work resulted in an equal degree of diaphragm fatigue, despite women performing significantly greater work relative to body mass. Metabolite‐induced reflex influences in sympathetic outflow originating from the diaphragm are attenuated in women, with potential implications for blood flow distribution during exercise. Abstract In response to inspiratory pressure‐threshold loading (PTL), women have greater inspiratory muscle endurance time, slower rate of diaphragm fatigue development, and a blunted pressor response compared to men. It is unclear if these differences are due to discrepancies in absolute diaphragm force output. We tested the hypothesis that following inspirations performed at equal absolute intensities, females would develop a similar level of diaphragm fatigue and an attenuated cardiovascular response relative to men. Healthy young men (n = 8, age = 24 ± 3 years) and women (n = 8, age = 23 ± 3 years) performed PTL whilst targeting a transdiaphragmatic pressure (Pdi) of 92 cmH2O for 5 min. Diaphragm fatigue was assessed via twitch Pdi (Pdi,tw) using cervical magnetic stimulation. Heart rate (HR) and mean arterial blood pressure were monitored continuously. During PTL, the absolute amount of diaphragm work was not different between men (13,399 ± 2019 cmH2O s) and women (12,986 ± 1846 cmH2O s; P > 0.05); however, women performed the PTL task at a higher relative trueP¯di/Pdi,max. Following inspiratory PTL, the magnitude of reduction in Pdi,tw was similar between men (−27.1 ± 7.2%) and women (−23.8 ± 13.8%; P > 0.05). There were significant increases in HR over time (P < 0.05), but this did not differ on the basis of sex (P > 0.05). Mean arterial blood pressure increased significantly over time in both men and women (P < 0.05); however, the rate of change was higher in men (6.24 ± 2.54 mmHg min−1) than in women (4.15 ± 2.52 mmHg min−1) (P < 0.05). We conclude that the female diaphragm is protected against severe fatigue when inspiratory work is excessive and as a result does not evoke overt sympathoexcitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.