Pickering emulsions stabilized by the interaction of palmitic acid (PA) and silica nanoparticles (SiNPs) at the water/oil interface have been studied using different alkane oil phases. The interaction of palmitic acid and SiNPs has a strong synergistic character in relation to the emulsion stabilization, leading to an enhanced emulsion stability in relation to that stabilized only by the fatty acid. This results from the formation of fatty acid-nanoparticle complexes driven by hydrogen bond interactions, which favor particle attachment at the fluid interface, creating a rigid armor that minimizes droplet coalescence. The comparison of emulsions obtained using different alkanes as the oil phase has shown that the hydrophobic mismatch between the length of the alkane chain and the C16 hydrophobic chain of PA determines the nature of the emulsions, with the solubility of the fatty acid in the oil phase being a very important driving force governing the appearance of phase inversion.
Fluid/fluid interfaces are ubiquitous in science and technology, and hence, the understanding of their properties presents a paramount importance for developing a broad range of soft interface dominated materials, but also for the elucidation of different problems with biological and medical relevance. However, the highly dynamic character of fluid/fluid interfaces makes shedding light on fundamental features guiding the performance of the interfaces very complicated. Therefore, the study of fluid/fluid interfaces cannot be limited to an equilibrium perspective, as there exists an undeniable necessity to face the study of the deformation and flow of these systems under the application of mechanical stresses, i.e., their interfacial rheology. This is a multidisciplinary challenge that has been evolving fast in recent years, and there is currently available a broad range of experimental and theoretical methodologies providing accurate information of the response of fluid/fluid interfaces under the application of mechanical stresses, mainly dilational and shear. This review focused on providing an updated perspective on the study of the response of fluid/fluid interfaces to dilational stresses; to open up new avenues that enable the exploitation of interfacial dilational rheology and to shed light on different problems in the interest of science and technology.
The concentration dependence of the surface tension of several binary mixtures of non-electrolytes has been measured at 298.15 K. The mixtures have been chosen since they presented a so-called “W-shape” concentration dependence of the excess constant pressure heat capacity and high values of the concentration-concentration correlation function. This behavior was interpreted in terms of the existence of anomalously high concentration fluctuations that resemble those existing in the proximities of critical points. However, no liquid-liquid phase separation has been found in any of these mixtures over a wide temperature range. In this work, we have extended these studies to the liquid-air interfacial properties. The results show that the concentration dependence of the surface tension shows a plateau and the mixing surface tension presents a “W-shape” behavior. To the best of our knowledge, this is the first time that this behavior is reported. The weak anomalies of the surface tension near a liquid-liquid critical point suggest that the results obtained cannot be considered far-from-critical effects. The usual approach of substituting the activity by the concentration in the Gibbs equation for the relative surface concentration has been found to lead to large errors and the mixtures to have a fuzzy and thick liquid/vapor interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.