The heart period (R-R) variability power spectrum presents two components, at low (LF; approximately 0.10 Hz) and high (approximately 0.25 Hz) frequencies, whose reciprocal powers appear to furnish an index of sympathovagal interaction modulating heart rate. In addition, the LF component of the systolic arterial pressure variability spectrum furnishes a marker of sympathetic modulation of vasomotor activity. The contribution of spinal and supraspinal neural circuits to the genesis of these rhythmic oscillatory components remains largely unsettled. Therefore we performed spectral analysis of R-R and systolic arterial pressure variabilities in 15 chronic neurologically complete quadriplegic patients (QP) and in 15 control subjects during resting conditions, controlled respiration, and head-up tilt. At rest, in seven QP the LF component was undetectable in both cardiovascular variability spectra; in two QP this component was present only in R-R variability spectrum, whereas the remaining six showed a significantly reduced LF in both signals. In QP, the LF component, when present, underwent paradoxical changes with respect to controls, decreasing during tilt and increasing during controlled respiration. In five QP in whom the recording session was repeated after 6 mo, a significant increase in LF was observed in both variability spectra. These data confirm the finding that a disconnection of sympathetic outflow from supraspinal centers can cause the disappearance of the LF spectral component. However, LF presence in some QP supports the hypothesis of a spinal rhythmicity likely to be modulated by the afferent sympathetic activity.
Background The use of processed electroencephalography (pEEG) for depth of sedation (DOS) monitoring is increasing in anesthesia; however, how to use of this type of monitoring for critical care adult patients within the intensive care unit (ICU) remains unclear. Methods A multidisciplinary panel of international experts consisting of 21 clinicians involved in monitoring DOS in ICU patients was carefully selected on the basis of their expertise in neurocritical care and neuroanesthesiology. Panelists were assigned four domains (techniques for electroencephalography [EEG] monitoring, patient selection, use of the EEG monitors, competency, and training the principles of pEEG monitoring) from which a list of questions and statements was created to be addressed. A Delphi method based on iterative approach was used to produce the final statements. Statements were classified as highly appropriate or highly inappropriate (median rating ≥ 8), appropriate (median rating ≥ 7 but < 8), or uncertain (median rating < 7) and with a strong disagreement index (DI) (DI < 0.5) or weak DI (DI ≥ 0.5 but < 1) consensus. Results According to the statements evaluated by the panel, frontal pEEG (which includes a continuous colored density spectrogram) has been considered adequate to monitor the level of sedation (strong consensus), and it is recommended by the panel that all sedated patients (paralyzed or nonparalyzed) unfit for clinical evaluation would benefit from DOS monitoring (strong consensus) after a specific training program has been performed by the ICU staff. To cover the gap between knowledge/rational and routine application, some barriers must be broken, including lack of knowledge, validation for prolonged sedation, standardization between monitors based on different EEG analysis algorithms, and economic issues. Conclusions Evidence on using DOS monitors in ICU is still scarce, and further research is required to better define the benefits of using pEEG. This consensus highlights that some critically ill patients may benefit from this type of neuromonitoring.
The logistic model that we developed meets high standards for discrimination and calibration. However, SAPS loses its discriminative power over time; accuracy of prediction is maintained at an acceptable level only in patients who stay in the ICU no longer than 5 days. The stay in the ICU represents a complex variable, which is not predictable, that influences the performance of SAPS on the first day.
The analysis of the central and the autonomic nervous systems (CNS, ANS) activities during general anesthesia (GA) provides fundamental information for the study of neural processes that support alterations of the consciousness level. In the present pilot study, we analyzed EEG signals and the heart rate (HR) variability (HRV) in a sample of 11 patients undergoing spinal surgery to investigate their CNS and ANS activities during GA obtained with propofol administration. Data were analyzed during different stages of GA: baseline, the first period of anesthetic induction, the period before the loss of consciousness, the first period after propofol discontinuation, and the period before the recovery of consciousness (ROC). In EEG spectral analysis, we found a decrease in posterior alpha and beta power in all cortical areas observed, except the occipital ones, and an increase in delta power, mainly during the induction phase. In EEG connectivity analysis, we found a significant increase of local efficiency index in alpha and delta bands between baseline and loss of consciousness as well as between baseline and ROC in delta band only and a significant reduction of the characteristic path length in alpha band between the baseline and ROC. Moreover, connectivity results showed that in the alpha band there was mainly a progressive increase in the number and in the strength of incoming connections in the frontal region, while in the beta band the parietal region showed mainly a significant increase in the number and in the strength of outcoming connections values. The HRV analysis showed that the induction of anesthesia with propofol was associated with a progressive decrease in complexity and a consequent increase in the regularity indexes and that the anesthetic procedure determined bradycardia which was accompanied by an increase in cardiac sympathetic modulation and a decrease in cardiac parasympathetic modulation during the induction. Overall, the results of this pilot study showed as propofol-induced anesthesia caused modifications on EEG signal, leading to a “rebalance” between long and short-range cortical connections, and had a direct effect on the cardiac system. Our data suggest interesting perspectives for the interactions between the central and autonomic nervous systems for the modulation of the consciousness level.
BIS-guided general anaesthesia within a 40-60 interval, with low Ce of Propofol (≤2 μ/ml) and high analgesic regime allow reliable tMEP measurements, avoiding postoperative neurological impairment and major adverse outcomes, such as seizure and awareness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.