Disclosed herein is a photo-organocatalytic enantioselective α- and γ-alkylation of aldehydes and enals, respectively, with bromomalonates. The chemistry uses a commercially available aminocatalyst and occurs under illumination by a fluorescent light bulb in the absence of any external photoredox catalyst. Mechanistic investigations reveal the previously hidden ability of transiently generated enamines to directly reach an electronically excited state upon light absorption while successively triggering the formation of reactive radical species from the organic halides. At the same time, the ground state chiral enamines provide effective stereochemical induction for the enantioselective alkylation process.
The decarboxylative reduction of naturally abundant carboxylic acids such as α-amino acids and α-hydroxy acids has been achieved via visible-light photoredox catalysis. By using an organocatalytic photoredox system, this method offers a mild and rapid entry to a variety of high-value compounds including medicinally relevant scaffolds. Regioselective decarboxylation is achieved when differently substituted dicarboxylic acids are employed. The application of this method to the synthesis of enantioenriched 1-aryl-2,2,2-trifluoroethyl chiral amines starting from natural α-amino acids further testifies to the utility of the developed photocatalytic decarboxylative reduction protocol.
A significant limitation of modern asymmetric catalysis is that, when applied to processes that generate chiral molecules with multiple stereogenic centers in a single step, researchers cannot selectively access the full matrix of all possible stereoisomeric products. Mirror image products can be discretely provided by the enantiomeric pair of a chiral catalyst. But modulating the enforced sense of diastereoselectivity using a single catalyst is a largely unmet challenge. We document here the possibility of switching the catalytic functions of a chiral organic small molecule (a quinuclidine derivative with a pendant primary amine) by applying an external chemical stimulus, in order to induce diastereodivergent pathways. The strategy can fully control the stereochemistry of the asymmetric conjugate addition of alkyl thiols to α-substituted α,β-unsaturated ketones, a class of carbonyls that has never before succumbed to a catalytic approach. The judicious choice of acidic additives and reaction media switches the sense of the catalyst's diastereoselection, thereby affording either the syn or anti product with high enantioselectivity.
Simple and abundant carboxylic acids have been used as acyl radical precursor by means of visible-light photoredox catalysis. By the transient generation of a reactive anhydride intermediate, this redox-neutral approach offers a mild and rapid entry to high-value heterocyclic compounds without the need of UV irradiation, high temperature, high CO pressure, tin reagents, or peroxides.
We describe two procedures for the synthesis of primary amines derived from 9-amino(9-deoxy)epi cinchona alkaloids, valuable catalysts used in the asymmetric functionalization of carbonyl compounds. The first approach allows the one-pot 5-g-scale syntheses of four cinchona-based analogs (1, 3, 5 and 7) from the alkaloids quinine (QN), quinidine (QD), dihydroquinine (DHQN) and dihydroquinidine (DHQD), respectively, performed by means of a Mitsunobu reaction to introduce an azide group, followed by reduction and hydrolysis. Demethylation of 1, 3, 5 and 7 with BBr(3) provided direct access to the bifunctional aminocatalysts 2, 4, 6 and 8. A second approach, more convenient for scale-up (tested to a 20-g scale), is also provided. In this second procedure, the azides, formed from the O-mesylated derivatives of QN and QD, are selectively reduced with LiAlH(4) to afford catalysts 1 and 3, whereas hydrogenation (Pd/C) provides 5 and 7. Demethylation of 1, 3, 5 and 7 using an alkylthiolate affords 2, 4, 6 and 8 in a process in which the less-expensive QN and QD are the only starting materials used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.