The photochemistry of a molecular triad consisting of a porphyrin (P) covalently linked to a carotenoid polyene (C) and a fullerene derivative (C 60 ) has been studied at 20 K by time-resolved EPR spectroscopy following laser excitation. Excitation of the porphyrin moiety yields C-1 P-C 60 , which decays by photoinduced electron transfer to yield C-P •+ -C 60 •-. This state rapidly evolves into a final charge-separated state C •+ -P-C 60 •-, whose spin-polarized EPR signal was observed and simulated. There is a weak exchange interaction between the electrons in the radical pair (J ) 1.2 G). The C •+ -P-C 60 •state decays to give the carotenoid triplet in high yield with a time constant of 1.2 µs. The spin polarization of 3 C-P-C 60 is characteristic of a triplet formed by charge recombination of a singlet-derived radical pair. The kinetics of the decay of 3 C-P-C 60 to the ground state were also determined. The photoinduced electron transfer from an excited singlet state at low temperature and the high yield of charge recombination to a spin-polarized triplet mimic similar processes observed in photosynthetic reaction centers.
Time-resolved electron paramagnetic resonance (TREPR) spectroscopy was used to study two functionalized fullerenes consisting of a C60 moiety covalently linked to TEMPO radical via spacers of different length. Photoinduced electron spin polarization (ESP) reflecting a non-Boltzmann population within the energy levels of the spin system was observed in the electronic ground and excited states. Both fullerenes are characterized by a sign inversion of their TREPR spectra. A new mechanism of ESP generation was suggested to explain the experimental results. This mechanism, termed as the reversed quartet mechanism (RQM), includes the intersystem crossing process, which generates ESP in the excited trip-doublet and trip-quartet (2T1 and 4T1) states. This ISC is accompanied by ESP transfer to the ground state (2S0) by either electron-transfer reaction (in our case via charge transfer state, 2CT, i.e., 2T1--> 2CT --> 2S0 or internal conversion, 2T1--> 2S0.
The reactions of pyrazole (Hpz) with some copper(II) carboxylates in the presence of water yield trinuclear copper derivatives characterized by the triangular core [Cu3mu3-OH)(mu-pz)3(RCOO)2] (R = H, C2H5, C3H7). Copper(II) formate gives [Cu3(mu3-OH)(mu-pz)3(HCOO)2(Hpz)2] (1), whereas copper propionate and butyrate afford [Cu3(mu3-OH)(mu-pz)3(C2H5COO)2(EtOH)] (2) and [Cu3(mu3-OH)(mu-pz)3(C3H7COO)2(MeOH)(H2O)] (3), respectively, both containing solvent molecules coordinated to copper atoms. Magnetic susceptibilities are consistent with a single unpaired electron for each trinuclear unit of 1-3, and EPR measurements indicate that higher spin states, generated by exchange coupling between copper atoms, may be populated at room temperature. Density-functional calculations provide the description of the electronic structures of 1-3, allowing, at the same time, the assignment of their UV-vis absorption spectra. X-ray molecular structure determinations show that triangular trinuclear units of 1 are connected to each other through single formate bridges, forming one-dimensional (1D) zigzag coordination polymers, whereas in 2 and 3, two oxygen atoms of two carboxylate ions doubly bridge two copper atoms of different triangles, thus generating hexanuclear units. Moreover, in 2, two other propionate ions link together two hexanuclear units yielding a 12-membered cycle and giving rise to 1D coordination polymers. The supramolecular assemblies of 1-3 are compared to that of the previously reported trinuclear triangular copper(II) derivative [Cu3(mu3-OH)(mu-pz)3(CH3COO)2(Hpz)] (A), where a two-dimensional (2D) coordination polymer is present. The reactions of 3,5-dimethylpyrazole (Hpz) with copper(II) carboxylates in the same conditions yield 1:2 Cu(RCOO)2/Hpz adducts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.