Gallium nitride (GaN) is a compound semiconductor that has tremendous potential to facilitate economic growth in a semiconductor industry that is silicon-based and currently faced with diminishing returns of performance versus cost of investment. At a material level, its high electric field strength and electron mobility have already shown tremendous potential for high frequency communications and photonic applications. Advances in growth on commercially viable large area substrates are now at the point where power conversion applications of GaN are at the cusp of commercialisation. The future for building on the work described here in ways driven by specific challenges emerging from entirely new markets and applications is very exciting. This collection of GaN technology developments is therefore not itself a road map but a valuable collection of global state-of-the-art GaN research that will inform the next phase of the technology as market driven requirements evolve. First generation production devices are igniting large new markets and applications that can only be achieved using the advantages of higher speed, low specific resistivity and low saturation switching transistors. Major investments are being made by industrial companies in a wide variety of markets exploring the use of the technology in new circuit topologies, packaging solutions and system architectures that are required to achieve and optimise the system advantages offered by GaN transistors. It is this momentum that will drive priorities for the next stages of device research gathered here.
Solid state UV emitters have many advantages over conventional UV sources. The (Al,In,Ga)N material system is best suited to produce LEDs and laser diodes from 400 nm down to 210 nm—due to its large and tuneable direct band gap, n- and p-doping capability up to the largest bandgap material AlN and a growth and fabrication technology compatible with the current visible InGaN-based LED production. However AlGaN based UV-emitters still suffer from numerous challenges compared to their visible counterparts that become most obvious by consideration of their light output power, operation voltage and long term stability. Most of these challenges are related to the large bandgap of the materials. However, the development since the first realization of UV electroluminescence in the 1970s shows that an improvement in understanding and technology allows the performance of UV emitters to be pushed far beyond the current state. One example is the very recent realization of edge emitting laser diodes emitting in the UVC at 271.8 nm and in the UVB spectral range at 298 nm. This roadmap summarizes the current state of the art for the most important aspects of UV emitters, their challenges and provides an outlook for future developments.
This paper critically investigates the advantages and limitations of the current-transient methods used for the study of the deep levels in GaN-based high-electron mobility transistors (HEMTs), by evaluating how the procedures adopted for measurement and data analysis can influence the results of the investigation. The article is divided in two parts within Part I. 1) We analyze how the choice of the measurement and analysis parameters (such as the voltage levels used to induce the trapping phenomena and monitor the current transients, the duration of the filling pulses, and the method used for the extrapolation of the time constants of the capture/emission processes) can influence the results of the drain current transient investigation and can provide information on the location of the trap levels responsible for current collapse. 2) We present a database of defects described in more than 60 papers on GaN technology, which can be used to extract information on the nature and origin of the trap levels responsible for current collapse in AlGaN/GaN HEMTs. Within Part II, we investigate how self-heating can modify the results of drain current transient measurements on the basis of combined experimental activity and device simulation
Over the last decade, gallium nitride has emerged as an excellent material for the fabrication of power devices. Among the semiconductors for which power devices are already available on the market, GaN has the widest energy gap, the largest critical field, the highest saturation velocity, thus representing an excellent material for the fabrication of high speed/high voltage components.The presence of spontaneous and piezoelectric polarization allows to create a 2-dimensional electron gas, with high mobility and large channel density, in absence of any doping, thanks to the use of AlGaN/GaN heterostructures. This contributes to minimize resistive losses; at the same time, for GaN transistors switching losses are very low, thanks to the small parasitic capacitances and switching charges. Device scaling and monolithic integration enable high frequency operation, with consequent advantages in terms of miniaturization.For high power/high voltage operation, vertical device architectures are being proposed and investigated, and 3-dimensional structuresfin-shaped, trench-structured, nanowire-basedare demonstrating a great potential. Contrary to silicon, GaN is a relatively young material: trapping and degradation processes must be understood and described in detail, with the aim of optimizing device stability and reliability. This tutorial paper describes the physics, technology and reliability of GaN-based power devices: in the first part of the article, starting from a discussion of the main properties of the material, the characteristics of lateral and vertical GaN transistors are discussed in detail, to provide guidance in this complex and interesting field. The second part of the paper focuses on trapping and reliability aspects: the physical origin of traps in GaN, and the main degradation mechanisms are discussed in detail. The wide set of referenced papers and the insight on the most relevant aspects gives the reader a comprehensive overview on present and next-generation GaN electronics. IntroductionOver the past decade, gallium nitride has emerged as an excellent material for the fabrication of power semiconductor devices. Thanks to the unique properties of GaN, diodes and transistors based on this material have excellent performance, compared to their silicon counterparts, and are expected to find wide application in the next-generation power converters. Owing to the flexibility and the energy efficiency of GaN-based power converters, the interest towards this technology is rapidly growing: the aim of this tutorial is to review the most relevant physical properties, the operating principles, the fabrication parameters, and the stability/reliability issues of GaN-based power transistors. For introductory purposes, we start summarizing the physical reasons why GaN transistors achieve a much better performance than the corresponding silicon devices, to help the reader understanding the unique advantages of this technology.The properties of GaN devices allow the fabrication of high-efficiency (near or above 99 %)...
We investigated the origin of the high reverse leakage current in light emitting diodes (LEDs) based on (In,Ga)N/GaN nanowire (NW) ensembles grown by molecular beam epitaxy on Si substrates. To this end, capacitance deep level transient spectroscopy (DLTS) and temperature-dependent current-voltage (I-V) measurements were performed on a fully processed NW-LED. The DLTS measurements reveal the presence of two distinct electron traps with high concentrations in the depletion region of the p-i-n junction. These band gap states are located at energies of 570 ± 20 and 840 ± 30 meV below the conduction band minimum. The physical origin of these deep level states is discussed. The temperature-dependent I-V characteristics, acquired between 83 and 403 K, show that different conduction mechanisms cause the observed leakage current. On the basis of all these results, we developed a quantitative physical model for charge transport in the reverse bias regime. By taking into account the mutual interaction of variable range hopping and electron emission from Coulombic trap states, with the latter being described by phononassisted tunnelling and the Poole-Frenkel effect, we can model the experimental I-V curves in the entire range of temperatures with a consistent set of parameters. Our model should be applicable to planar GaN-based LEDs as well. Furthermore, possible approaches to decrease the leakage current in NW-LEDs are proposed. a) M. Musolino and D. van Treeck contributed equally to this work. b) Author to whom correspondence should be addressed. Electronic mail: treeck@pdi-berlin.de dependent current-voltage (I-V) measurements. On the basis of these data, we have developed a quantitative physical model able to describe the experimental I-V curves of NW-LEDs in the reverse bias regime for a wide range of temperatures. The assumptions made in this study should remain valid also for planar devices based on III-N heterostructures, thus making our model applicable also to conventional planar LEDs.The NW-LED structure employed in this work was grown by molecular beam epitaxy (MBE) on an AlN-buffered ndoped Si(111) substrate with the help of self-assembly processes. The active region of the NW-LED consists of four axial (In,Ga)N quantum wells (QWs) with an average In content of approximately 25%, separated by three GaN barriers. The last QW is immediately followed by a Mg-doped (Al,Ga)N electron blocking layer (EBL). The active region is embedded between two doped GaN segments designed such that an n-i-p diode doping profile is created. A schematic Si x O y n-Si(111) FIG. 1. (Color online) Schematic of the employed NW-LED structure. Note that the various dimensions are not to scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.