Designing smart garments has strong interdisciplinary implications, specifically related to user and technical requirements, but also because of the very different applications they have: medicine, sport and fitness, lifestyle monitoring, workplace and job conditions analysis, etc. This paper aims to discuss some user, textile, and technical issues to be faced in sensorized clothes development. In relation to the user, the main requirements are anthropometric, gender-related, and aesthetical. In terms of these requirements, the user’s age, the target application, and fashion trends cannot be ignored, because they determine the compliance with the wearable system. Regarding textile requirements, functional factors—also influencing user comfort—are elasticity and washability, while more technical properties are the stability of the chemical agents’ effects for preserving the sensors’ efficacy and reliability, and assuring the proper duration of the product for the complete life cycle. From the technical side, the physiological issues are the most important: skin conductance, tolerance, irritation, and the effect of sweat and perspiration are key factors for reliable sensing. Other technical features such as battery size and duration, and the form factor of the sensor collector, should be considered, as they affect aesthetical requirements, which have proven to be crucial, as well as comfort and wearability.
PEGASO is a FP7-funded project whose goal is to develop an ICT and mobile-based platform together with an appropriate strategy to tackle the diffusion of obesity and other lifestyle-related illnesses among teenagers. Indeed, the design of an engaging strategy, leveraging a complementary set of technologies, is the approach proposed by the project to promote the adoption of healthy habits such as active lifestyle and balanced nutrition and to effectively counter-fight the emergence of overweight and obesity in the younger population. A technological key element of such a strategy sees the adoption of wearable sensors to monitor teenagers’ activities, which is at the basis of developing awareness about the current lifestyle. This paper describes the experience carried out in the framework of the PEGASO project in developing and evaluating wearable monitoring systems addressed to adolescents. The paper describes the methodological approach based on the co-designing of such a wearable system and the main results that, in the first phase, involved a total of 407 adolescents across Europe in a series of focus groups conducted in three countries for the requirements definition phase. Moreover, it describes an evaluation process of signal reliability during the usage of the wearable system. The main results described here are: (a) a prototype of the standardized experimental protocol that has been developed and applied to test signal reliability in smart garments; (b) the requirements definition methodology through a co-design activity and approach to address user requirements and preferences and not only technological specifications. Such co-design approach is able to support a higher system acceptance and usability together with a sustained adoption of the solution with respect to the traditional technology push system development strategy.
Nowadays many senior citizens chose to live alone but they become a new challenge for healthcare services. Many examples demonstrated the occurrence of advise events and that elderly are not capable of seeking for help. This paper presents a part of a project called SMARTA: an environmental tele-monitoring system with a network of sensors and wearable devices for security and prevention in Active Aging. Sensorized garments and accelerometers fixed on the ground implements an integrated sensors system for monitoring elderly indoor and outdoor for a smart house and a smart city. The system is composed by two parts: a wearable system which consists of a sensorized garment coupled with a small electronic unit which allows for non-intrusive continuous cardio-respiratory monitoring; a set of four accelerometers data-logger, placed on the room floor, which continuously record the movement and is able to control if there are people in the room and if there is a falling. These sensors are accompanied by other home-automation sensors, which indicated the presence of the elderly and the use of the different furniture in the home. All the sensory systems send data to a body/home gateway that collect data and redirects theme to a center, which store and elaborate them in order to extract alarm and implements the monitoring and intervention services. A clinical trial is testing the reliability, the acceptability and the performance of the system for the future implementation of new prevention system.
The correct choice and customization of an orthosis are crucial to obtain the best comfort and efficiency. This study explored the feasibility of a multivariate quantitative assessment of the functional efficiency of lower limb orthosis through a novel wearable system. Gait basographic parameters and energetic indexes were analysed during a Six-Minute Walking Test (6-MWT) through a cost-effective, non-invasive polygraph device, with a multichannel wireless transmission, that carried out electro-cardiograph (ECG); impedance-cardiograph (ICG); and lower-limb accelerations detection. Four subjects affected by Post-Polio Syndrome (PPS) were recruited. The wearable device and the semi-automatic post-processing software provided a novel set of objective data to assess the overall efficiency of the patient-orthosis system. Despite the small number of examined subjects, the results obtained with this new approach encourage the application of the method thus enlarging the dataset to validate this promising protocol and measuring system in supporting clinical decisions and out of a laboratory environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.