Methamphetamine abuse is toxic to dopaminergic neurons, causing nigrostriatal denervation and striatal dopamine loss. Following methamphetamine exposure, the number of nigral cell bodies is generally preserved, but their cytoplasm features autophagic‐like vacuolization and cytoplasmic accumulation of α‐synuclein‐, ubiquitin‐ and parkin‐positive inclusion‐like bodies. Whether autophagy is epiphenomenal or it plays a role in the mechanism of methamphetamine toxicity and, in the latter case, whether its role consists of counteracting or promoting the neurotoxic effect remains obscure. We investigated the signaling pathway and the significance (protective vs. toxic) of autophagy activation and the convergence of the autophagic and the ubiquitin‐proteasome pathways at the level of the same intracellular bodies in a simple cell model of methamphetamine toxicity. We show that autophagy is rapidly up‐regulated in response to methamphetamine. Confocal fluorescence microscopy and immuno‐electron microscopy studies demonstrated the presence of α‐synuclein aggregates in autophagy‐lysosomal structures in cells exposed to methamphetamine, a condition compatible with cell survival. Inhibition of autophagy either by pharmacologic or genetic manipulation of the class III Phosphatidylinositol‐3 kinase‐mediated signaling prevented the removal of α‐synuclein aggregates and precipitated a bax‐mediated mitochondrial apoptosis pathway.
In familial neurodegenerative disorders, protein aggregates form continuously because of genetic mutations that drive the synthesis of truncated or unfolded proteins. The oxidative stress imposed by neurotransmitters and environmental neurotoxins constitutes an additional threat to the folding of the proteins and the integrity of organelle membranes in neurons. Failure in degrading such altered materials compromises the function of neurons and eventually leads to neurodegeneration. The lysosomal proteolytic enzyme Cathepsin D is the only aspartic-type protease ubiquitously expressed in all the cells of the human body, and it is expressed at high level in the brain. In general, cathepsin D mediated proteolysis is essential to neuronal cell homeostasis through the degradation of unfolded or oxidized protein aggregates delivered to lysosomes via autophagy or endocytosis. More specifically, many altered neuronal proteins that hallmark neurodegenerative diseases (e.g., the amyloid precursor, α-synuclein, and huntingtin) are physiologic substrates of cathepsin D and would abnormally accumulate if not efficiently degraded by this enzyme. Furthermore, experimental evidence indicates that cathepsin D activity is linked to the metabolism of cholesterol and of glycosaminoglycans, which accounts for its involvement in neuronal plasticity. This review focuses on the unique role of cathepsin D mediated proteolysis in the pathogenesis of human neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.