BackgroundEndothelial progenitor cells (EPCs) may be recruited from bone marrow to sustain tumor vascularisation and promote the metastatic switch. Understanding the molecular mechanisms driving EPC proliferation and tubulogenesis could outline novel targets for alternative anti-angiogenic treatments. Store-operated Ca2+ entry (SOCE), which is activated by a depletion of the intracellular Ca2+ pool, regulates the growth of human EPCs, where is mediated by the interaction between the endoplasmic reticulum Ca2+-sensor, Stim1, and the plasmalemmal Ca2+ channel, Orai1. As oncogenesis may be associated to the capability of tumor cells to grow independently on Ca2+ influx, it is important to assess whether SOCE regulates EPC-dependent angiogenesis also in tumor patients.Methodology/Principal FindingsThe present study employed Ca2+ imaging, recombinant sub-membranal and mitochondrial aequorin, real-time polymerase chain reaction, gene silencing techniques and western blot analysis to investigate the expression and the role of SOCE in EPCs isolated from peripheral blood of patients affected by renal cellular carcinoma (RCC; RCC-EPCs) as compared to control EPCs (N-EPCs). SOCE, activated by either pharmacological (i.e. cyclopiazonic acid) or physiological (i.e. ATP) stimulation, was significantly higher in RCC-EPCs and was selectively sensitive to BTP-2, and to the trivalent cations, La3+ and Gd3+. Furthermore, 2-APB enhanced thapsigargin-evoked SOCE at low concentrations, whereas higher doses caused SOCE inhibition. Conversely, the anti-angiogenic drug, carboxyamidotriazole (CAI), blocked both SOCE and the intracellular Ca2+ release. SOCE was associated to the over-expression of Orai1, Stim1, and transient receptor potential channel 1 (TRPC1) at both mRNA and protein level The intracellular Ca2+ buffer, BAPTA, BTP-2, and CAI inhibited RCC-EPC proliferation and tubulogenesis. The genetic suppression of Stim1, Orai1, and TRPC1 blocked CPA-evoked SOCE in RCC-EPCs.ConclusionsSOCE is remodelled in EPCs from RCC patients and stands out as a novel molecular target to interfere with RCC vascularisation due to its ability to control proliferation and tubulogenesis.
The term "angiogenic switch" describes one of the earlier events of tumorigenesis, that occurs when the balance between pro-and anti-angiogenic factors shifts towards a pro-angiogenic outcome. This leads to the transition from a microscopic indolent lesion to a macroscopic and vascularised primary tumor, that may eventually metastasize and spread to distant sites. The molecular mechanisms underlying such a critical step in the carcinogenetic process have been extensively investigated. Both local endothelial cells (ECs) and endothelial progenitor cells (EPCs), recruited from bone marrow, have been implicated in the angiogenic switch, which is ultimately triggered by a plethora of growth factors released by cancer cells, pivotal among which is vascular endothelial growth factor (VEGF); indeed, VEGF both activates ECs nearby the growing tumor, and leads to EPC mobilization into the circulation. In kidney, in particular, the frequent mutation of the Von Hippel Lindau tumor suppressor gene leads to an overproduction of pro-angiogenic factors which makes this neoplasm quite sensitive to antiangiogenic drugs. However, it is now evident that the use of VEGF(Rs) inhibitors in everyday clinical practice is not as effective as observed in murine models. The investigation of alternative signaling pathways involved in the angiogenic switch is, therefore, imperative in order to induce tumor regression whereby preventing harmful drawback consequences. Ca(2+) entry across the plasma membrane has long been known to stimulate mature ECs to undergo angiogenesis. Recent work from several groups worldwide has then outlined that members of the Transient Receptor Potential (TRP) super-family of cationic channels and Orai1 provide the pathway for such proangiogenic Ca(2+) signal. In addition, Canonical TRP 1 (TRPC1) and Orai1 channels control proliferation and tubulogenesis in both normal EPCs and EPCs isolated from peripheral blood of tumor patients. As a consequence, TRP channels and Orai1 might serve as novel molecular targets to develop alternative and more effective strategies of angiogenesis inhibition.
Chron’s Disease is a chronic inflammatory intestinal disease, first described at the beginning of the last century. The disease is characterized by the alternation of periods of flares and remissions influenced by a complex pathogenesis in which inflammation plays a key role. Crohn’s disease evolution is mediated by a complex alteration of the inflammatory response which is characterized by alterations of the innate immunity of the intestinal mucosa barrier together with a remodeling of the extracellular matrix through the expression of metalloproteins and increased adhesion molecules expression, such as MAcCAM-1. This reshaped microenvironment enhances leucocytes migration in the sites of inflammation, promoting a TH1 response, through the production of cytokines such as IL-12 and TNF-α. IL-12 itself and IL-23 have been targeted for the medical treatment of CD. Giving the limited success of medical therapies, the treatment of the disease is invariably surgical. This review will highlight the role of inflammation in CD and describe the surgical approaches for the prevention of the almost inevitable recurrence.
Objectives: This study included a cohort of advanced renal cell carcinoma patients treated with sunitinib. Since resistance to sunitinib may be mediated through angiogenic cytokines other than VEGF, we measured the circulating levels of three pro-angiogenic cytokines: basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), and interleukin (IL)-6. Methods: Cytokines were measured at baseline and on the first day of each treatment cycle until progression in 85 advanced kidney cancer patients treated with sunitinib using a quantitative sandwich enzyme immunoassay (ELISA) technique. Results: Even though no statistically significant differences in the titers of the three cytokines were observed between baseline and the time of progression in the whole patient cohort, in 45.3, 46.6, and 37.3% of the patients a more than 50% increase between baseline and the time of progression was shown in circulating IL-6, bFGF, and HGF, respectively. Furthermore, this increase was more than 100% in 37.3, 44, and 30.6% of the patients, respectively. We also demonstrated that, in these patients, cytokines tended to increase and to remain high immediately before progression. Conclusions: In a large percentage of kidney cancer patients, progression is preceded by a significant increase in pro-angiogenic cytokines other than VEGF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.