The musculoskeletal system is composed by hard and soft tissue. These tissues are characterized by a wide range of mechanical properties that cause a progressive transition from one to the other. These material gradients are mandatory to reduce stress concentrations at the junction site. Nature has answered to this topic developing optimized interfaces, which enable a physiological transmission of load in a wide area over the junction. The interfaces connecting tendons and ligaments to bones are called entheses, while the ones between tendons and muscles are named myotendinous junctions. Several injuries can affect muscles, bones, tendons, or ligaments, and they often occur at the junction sites. For this reason, the main aim of the innovative field of the interfacial tissue engineering is to produce scaffolds with biomaterial gradients and mechanical properties to guide the cell growth and differentiation. Among the several strategies explored to mimic these tissues, the electrospinning technique is one of the most promising, allowing to generate polymeric nanofibers similar to the musculoskeletal extracellular matrix. Thanks to its extreme versatility, electrospinning has allowed the production of sophisticated scaffolds suitable for the regeneration of both the entheses and the myotendinous junctions. The aim of this review is to analyze the most relevant studies that applied electrospinning to produce scaffolds for the regeneration of the enthesis and the myotendinous junction, giving a comprehensive overview on the progress made in the field, in particular focusing on the electrospinning strategies to produce these scaffolds and their mechanical, in vitro, and in vivo outcomes.
Reconstructions of ruptured tendons and ligaments currently have dissatisfactory failure rate. Failures are mainly due to the mechanical mismatch of commercial implants with respect to the host tissue. In fact, it is crucial to replicate the morphology (hierarchical in nature) and mechanical response (highly-nonlinear) of natural tendons and ligaments.The aim of this study was to develop morphologically bioinspired hierarchical Nylon 6,6 electrospun assemblies recreating the structure and performance of tendons and ligaments. First, we built different electrospun bundles to find the optimal orientation of the nanofibers. A 2nd-level hierarchical assembly was fabricated with a dedicated process that allowed tightly joining the bundles one next to the other with an electrospun sheath, so as to improve the mechanical performance. Finally, a further hierarchical 3rdlevel assembly was constructed by grouping several 2nd-level assemblies. The morphology of the different structures was assessed with scanning electron microscopy and high-resolution X-ray tomography, which allowed measuring the directionality of the nanofibers in the bundles and in the sheaths. The mechanical properties of the single bundles and of the 2nd-level assemblies were measured with tensile tests. The single bundles and the hierarchical assemblies showed morphology and directionality of the nanofibers similar to the tendons and ligaments. The strength and stiffness were comparable to that of tendons and ligaments. In conclusion, this work showed an innovative electrospinning production process to build nanofibrous Nylon 6,6 hierarchical assemblies which are suitable as future implantable devices and able to mimic the multiscale morphology and the biomechanical properties of tendons and ligaments.
Tendon and ligament injuries are triggered by mechanical loading, but the specific mechanisms are not yet clearly identified. It is well established however, that the inflection and transition points in tendon stress-strain curves represent thresholds that may signal the onset of irreversible fibrillar sliding. This phenomenon often results in a progressive macroscopic failure of these tissues. With the aim to simulate and replace tendons, electrospinning has been demonstrated to be a suitable technology to produce nanofibers similar to the collagen fibrils in a mat form. These nanofibrous mats can be easily assembled in higher hierarchical levels to reproduce the whole tissue structure. Despite the fact that several groups have developed electrospun tendon-inspired structures, an investigation of the inflection and transition point mechanics is missing. Comparing their behavior with that of the natural counterpart is important to adequately replicate their behavior at physiological strain levels. To fill this gap, in this work fascicle-inspired electrospun nylon 6,6 bundles were produced with different collector peripheral speeds (i.e., 19.7 m s–1; 13.7 m s–1; 7.9 m s–1), obtaining different patterns of nanofibers alignment. The scanning electron microcopy revealed a fibril-inspired structure of the nanofibers with an orientation at the higher speed similar to those in tendons and ligaments (T/L). A tensile mechanical characterization was carried out showing an elastic-brittle biomimetic behavior for the higher speed bundles with a progressively more ductile behavior at slower speeds. Moreover, for each sample category the transition and the inflection points were defined to study how these points can shift with the nanofiber arrangement and to compare their values with those of tendons. The results of this study will be of extreme interest for the material scientists working in the field, to model and improve the design of their electrospun structures and scaffolds and enable building a new generation of artificial tendons and ligaments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.