Despite being internal organs, digestive structures are frequently preserved in Cambrian Lagerstätten. However, the reasons for their fossilisation and their biological implications remain to be thoroughly explored. This is particularly true with arthropods – typically the most diverse fossilised organisms in Cambrian ecosystems – where digestive structures represent an as-yet underexploited alternative to appendage morphology for inferences on their biology. Here we describe the phosphatised digestive structures of three trilobite species from the Cambrian Weeks Formation Lagerstätte (Utah). Their exquisite, three-dimensional preservation reveals unique details on trilobite internal anatomy, such as the position of the mouth and the absence of a differentiated crop. In addition, the presence of paired pygidial organs of an unknown function is reported for the first time. This exceptional material enables exploration of the relationships between gut phosphatisation and the biology of organisms. Indeed, soft-tissue preservation is unusual in these fossils as it is restricted to the digestive structures, which indicates that the gut played a central role in its own phosphatisation. We hypothesize that the gut provided a microenvironment where special conditions could develop and harboured a source of phosphorus. The fact that gut phosphatization has almost exclusively been observed in arthropods could be explained by their uncommon ability to store ions (including phosphorous) in their digestive tissues. However, in some specimens from the Weeks Formation, the phosphatisation extends to the entire digestive system, suggesting that trilobites might have had some biological particularities not observed in modern arthropods. We speculate that one of them might have been an increased capacity for ion storage in the gut tissues, related to the moulting of their heavily-mineralised carapace.
The Guzhangian Weeks Formation preserves a diverse, yet virtually unstudied, non-trilobite arthropod fauna. Here we describe Tremaglaspis vanroyi sp. nov., the oldest representative of an enigmatic group of extinct arthropods, the Aglaspidida. Tremaglaspis was previously known from the Lower Ordovician and its morphology was regarded as particularly derived within the clade. Its occurrence in the Cambrian of Utah suggests that much of the early evolutionary history of the Aglaspidida remains unknown. A review of the environmental settings of previous aglaspidid findings suggests that these arthropods preferentially inhabited shallow-water environments, which may partially explain their limited fossil record.
Radiodonts have long been known from Cambrian deposits preserving non-biomineralizing organisms. In Utah, the presence of these panarthropods in the Spence and Wheeler (House Range and Drum Mountains) biotas is now well-documented. Conversely, radiodont occurrences in the Marjum Formation have remained scarce. Despite the large amount of work undertaken on its diverse fauna, only one radiodont (Peytoia) has been reported from the Marjum Biota. In this contribution we quadruple the known radiodont diversity of the Marjum fauna, with the description of the youngest members of two genera, Caryosyntrips and Pahvantia, and that of a new taxon Buccaspinea cooperi gen. et sp. nov. This new taxon can be identified from its large oral cone bearing robust hooked teeth with one, two, or three cusps, and by the unique endite morphology and organisation of its frontal appendages. Appendages of at least 12 podomeres bear six recurved plate-like endites proximal to up to four spiniform distal endites. Pahvantia hastata specimens from the Marjum Formation are particularly large, but otherwise morphologically indistinguishable from the carapace elements of this species found in the Wheeler Formation. One of the two new Caryosyntrips specimens can be confidently assigned to C. camurus. The other bears the largest spines relative to appendage length recorded for this genus, and possesses endites of variable size and unequal spacing, making its taxonomic assignment uncertain. Caryosyntrips, Pahvantia, and Peytoia are all known from the underlying Wheeler Formation, whereas isolated appendages from the Spence Shale and the Wheeler Formation, previously assigned to Hurdia, are tentatively reidentified as Buccaspinea. Notably, none of these four genera occurs in the overlying Weeks Formation, providing supporting evidence of a faunal restructuring around the Drumian-Guzhangian boundary. The description of three additional nektonic taxa from the Marjum Formation further documents the higher relative proportion of free-swimming species in this biota compared to those of the Wheeler and Weeks Lagerstätten. This could be related to a moderate deepening of the basin and/or changing regional ocean circulation at this time.
The Weeks Formation in Utah is the youngest (c. 499 Ma) and least studied Cambrian Lagerstätte of the western USA. It preserves a diverse, exceptionally preserved fauna that inhabited a relatively deep water environment at the offshore margin of a carbonate platform, resembling the setting of the underlying Wheeler and Marjum formations. However, the Weeks fauna differs significantly in composition from the other remarkable biotas of the Cambrian Series 3 of Utah, suggesting a significant Guzhangian faunal restructuring. This bioevent is regarded as the onset of a transitional episode in the history of life, separating the two primary diversifications of the Early Paleozoic. The Weeks fossils have been strongly affected by late diagenetic processes, but some specimens still preserve exquisite anatomical details.Supplementary material: a supplementary text (material and methods), four supplementary tables (compositions of the lower and upper Weeks faunas, structure of the upper Weeks fauna, and results of the similarity analyses), and a supplementary data file (generic presence/absence matrix) are available at https://doi.org/10.6084/m9.figshare.c.4109588
The Guzhangian Weeks Formation (House Range, Utah, USA) contains a virtually unstudied but diverse assemblage of "soft-bodied" organisms. This fauna includes several enigmatic appendages of arthropods that are described in this contribution. Six appendages (two isolated and four paired appendages) are interpreted as frontal appendages of a probably new species of Anomalocaris. They are characterized by a slender morphology, 14 podomeres, ventral spines alternating in size, up to three auxiliary spines per ventral spine, and only two dorsal spines. Another isolated appendage is also tentatively assigned to Anomalocaris, but it exhibits a more robust morphology, a stronger distal tapering, and apparently simple ventral spines, suggesting that it may represent a distinct taxon. These frontal appendages represent the youngest occurrence of anomalocaridids in Laurentia and demonstrate the persistence of older, Burgess Shale-type taxa in the Weeks Formation. An assemblage of four antenniform and six robust and heavily-armed appendages is also described. These are interpreted as the serially arranged, anterior appendages of a single individual of an undetermined arthropod species. This association of three pairs of robust, spiny appendages with two pairs of antenniform structures in a Cambrian arthropod is unique. •
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.