Compressor inlet air cooling is an effective method for enhancing the performance of gas turbine plants. This paper presents a comparative analysis of different solutions for cooling the compressor inlet air for the LM6000 gas turbine in a cogeneration plant operated in base load. Absorption and evaporative cooling systems are considered and their performance and economic benefits compared for the dry low-NOx LM6000 version. Reference is made to two sites in Northern and Southern Italy, whose climatic data series for modeling the variations in ambient temperature during the single day were used to account for the effects of climate in the simulation. The results confirmed the advantages of inlet air cooling systems. In particular, evaporative cooling proved to be cost effective, though capable of supplying only moderate cooling, while absorption systems have a higher cost but are also more versatile and powerful in base-load operation. An integration of the two systems proved to be able to give both maximum performance enhancement and net economic benefit.
Compressor inlet air cooling is an effective method for enhancing the performance of gas turbine plants. This paper presents a comparative analysis of different solutions for cooling the compressor inlet air for the LM6000 gas turbine in a cogeneration plant operated in base load. Absorption and evaporative cooling systems are considered and their performance and economic benefits compared for the dry low-NOx LM6000 version. Reference is made to two sites in Northern and Southern Italy, whose climatic data series for modeling the variations in ambient temperature during the single day were used, to account for the effects of climate in the simulation. The results confirmed the advantages of inlet air cooling systems. In particular, evaporative cooling proved to be cost-effective, though capable of supplying only moderate cooling, while absorption systems have a higher cost but are also more versatile and powerful in base load operation. An integration of the two systems proved to be able to give both maximum performance enhancement and net economic benefit.
This work describes the development of a computer modeling system for infrared pyrometry measurement of gas turbine blade temperature. The model accurately evaluates apparent target emissivity and temperature on the basis of the radiation heat fluxes exchanged at steady-state conditions. Experimental testing conducted on gas turbine models in a controlled-temperature furnace has shown that the reliability of the target emissivity prediction effectively reduces one of the major causes of error in infrared pyrometry.
This work describes the development of a computer modeling system for infrared pyrometry measurement of gas turbine blade temperature. The model accurately evaluates apparent target emissivity and temperature on the basis of the radiation heat fluxes exchanged at steady-state conditions. Experimental testing conducted on gas turbine models in a controlled-temperature furnace has shown that the reliability of the target emissivity prediction effectively reduces one of the major causes of error in infrared pyrometry.
A cogeneration plant with a small gas turbine was installed in a pharmaceutical factory and instrumented for acquiring all the values necessary to appraise both its energetic and cost advantages. The plant was designed and built as a demonstrative project under a program for energy use improvement in industry, partially financed by the European Union. The system comprises as its main components: 1) a gas turbine cogeneration plant for production of power and thermal energy under the form of hot water, superheated water, and steam; 2) a two-stage absorption unit, fueled by the steam produced in the cogeneration plant, for production of cooling thermal energy. The plant was provided with an automatized control system for the acquisition of plant operating parameters. The large amount of data thus provided made it possible to compare the new plant, under actual operating conditions, with the previously existing cooling power station with compression units, and with a traditional power plant. This comparative analysis was based on measurements of the plant operating parameters over nine months, and made it possible to compare actual plant performance with that expected and ISO values. The analysis results reveal that gas turbine performance is greatly affected by part-load as well as ambient temperature conditions. Two-stage absorber performance, moreover, turned out to decrease sharply and more than expected in off-design operating conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.