BackgroundTo assess whether SARS-CoV-2 infection may affect the central nervous system, specifically neurons and glia cells, even without clinical neurological involvement.MethodsIn this single centre prospective study, serum levels of neurofilament light chain (sNfL) and glial fibrillar acidic protein (sGFAp) were assessed using SimoaTM assay Neurology 2-Plex B Assay Kit, in 148 hospitalised patients with COVID-19 without clinical neurological manifestations and compared them to 53 patients with interstitial pulmonary fibrosis (IPF) and 108 healthy controls (HCs).ResultsAge and sex-corrected sNfL levels were higher in patients with COVID-19 (median log10-sNfL 1.41; IQR 1.04–1.83) than patients with IPF (median log10-sNfL 1.18; IQR 0.98–1.38; p<0.001) and HCs (median log10-sNfL 0.89; IQR 0.72–1.14; p<0.001). Likewise, age and sex-corrected sGFAP levels were higher in patients with COVID-19 (median log10-sGFAP 2.26; IQR 2.02–2.53) in comparison with patients with IPF (median log10-sGFAP 2.15; IQR 1.94–2.30; p<0.001) and HCs (median log10-sGFAP 1.87; IQR 0.64–2.09; p<0.001). No significant difference was found between patients with HCs and IPF (p=0.388 for sNfL and p=0.251 for sGFAp). In patients with COVID-19, a prognostic model with mortality as dependent variable (26/148 patients died during hospitalisation) and sNfl, sGFAp and age as independent variables, showed an area under curve of 0.72 (95% CI 0.59 to 0.84; negative predictive value (NPV) (%):80,positive predictive value (PPV)(%): 84; p=0.0008).ConclusionThe results of our study suggest that neuronal and glial degeneration can occur in patients with COVID-19 regardless of overt clinical neurological manifestations. With age, levels of sNfl and GFAp can predict in-hospital COVID-19-associated mortality and might be useful to assess COVID-19 patient prognostic profile.
Vitamin D may have multiple effects on the nervous system and its deficiency can represent a possible risk factor for the development of many neurological diseases. Recent studies are also trying to clarify the different effects of vitamin D supplementation over the course of progressive neurological diseases. In this narrative review, we summarise vitamin D chemistry, metabolism, mechanisms of action, and the recommended daily intake. The role of vitamin D on gene transcription and the immune response is also reviewed. Finally, we discuss the scientific evidence that links low 25-hydroxyvitamin D concentrations to the onset and progression of severe neurological diseases, such as multiple sclerosis, Parkinson’s disease, Alzheimer’s disease, migraine, diabetic neuropathy and amyotrophic lateral sclerosis. Completed and ongoing clinical trials on vitamin D supplementation in neurological diseases are listed.
Edentulism is one of the most significant problems given the increase in the elderly population. The aim of the present investigation is to evaluate a case report with angled screwdriver solutions and new kinds of low-profile attachments in full arch rehabilitation with divergent implants. In this clinical case we will analyze how low-profile abutments with angled screwdriver channel in the OT Bridge system (Rhein83, Bologna, Italy) can be a predictable solution over time to create a fixed prosthesis on disparallel implants with a digital structure (New Ancorvis, Bologna, Italy) for the satisfaction of the patient and of the work team.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.