BackgroundUntil now, only a few studies have compared the ability of different intraoral scanners (IOS) to capture high-quality impressions in patients with dental implants. Hence, the aim of this study was to compare the trueness and precision of four IOS in a partially edentulous model (PEM) with three implants and in a fully edentulous model (FEM) with six implants.MethodsTwo gypsum models were prepared with respectively three and six implant analogues, and polyether-ether-ketone cylinders screwed on. These models were scanned with a reference scanner (ScanRider®), and with four IOS (CS3600®, Trios3®, Omnicam®, TrueDefinition®); five scans were taken for each model, using each IOS. All IOS datasets were loaded into reverse-engineering software, where they were superimposed on the reference model, to evaluate trueness, and superimposed on each other within groups, to determine precision. A detailed statistical analysis was carried out.ResultsIn the PEM, CS3600® had the best trueness (45.8 ± 1.6μm), followed by Trios3® (50.2 ± 2.5μm), Omnicam® (58.8 ± 1.6μm) and TrueDefinition® (61.4 ± 3.0μm). Significant differences were found between CS3600® and Trios3®, CS3600® and Omnicam®, CS3600® and TrueDefinition®, Trios3® and Omnicam®, Trios3® and TrueDefinition®. In the FEM, CS3600® had the best trueness (60.6 ± 11.7μm), followed by Omnicam® (66.4 ± 3.9μm), Trios3® (67.2 ± 6.9μm) and TrueDefinition® (106.4 ± 23.1μm). Significant differences were found between CS3600® and TrueDefinition®, Trios3® and TrueDefinition®, Omnicam® and TrueDefinition®. For all scanners, the trueness values obtained in the PEM were significantly better than those obtained in the FEM. In the PEM, TrueDefinition® had the best precision (19.5 ± 3.1μm), followed by Trios3® (24.5 ± 3.7μm), CS3600® (24.8 ± 4.6μm) and Omnicam® (26.3 ± 1.5μm); no statistically significant differences were found among different IOS. In the FEM, Trios3® had the best precision (31.5 ± 9.8μm), followed by Omnicam® (57.2 ± 9.1μm), CS3600® (65.5 ± 16.7μm) and TrueDefinition® (75.3 ± 43.8μm); no statistically significant differences were found among different IOS. For CS3600®, For CS3600®, Omnicam® and TrueDefinition®, the values obtained in the PEM were significantly better than those obtained in the FEM; no significant differences were found for Trios3®.ConclusionsSignificant differences in trueness were found among different IOS; for each scanner, the trueness was higher in the PEM than in the FEM. Conversely, the IOS did not significantly differ in precision; for CS3600®, Omnicam® and TrueDefinition®, the precision was higher in the PEM than in the FEM. These findings may have important clinical implications.
Background Until now, a few studies have addressed the accuracy of intraoral scanners (IOSs) in implantology. Hence, the aim of this in vitro study was to assess the accuracy of 5 different IOSs in the impressions of single and multiple implants, and to compare them. Methods Plaster models were prepared, representative of a partially edentulous maxilla (PEM) to be restored with a single crown (SC) and a partial prosthesis (PP), and a totally edentulous maxilla (TEM) to be restored with a full-arch (FA). These models were scanned with a desktop scanner, to capture reference models (RMs), and with 5 IOSs (CS 3600®, Trios3®, Omnicam®, DWIO®, Emerald®); 10 scans were taken for each model, using each IOS. All IOS datasets were loaded into a reverse-engineering software where they were superimposed on the corresponding RMs, to evaluate trueness, and superimposed on each other within groups, to determine precision. A statistical analysis was performed. Results In the SC, CS 3600® had the best trueness (15.2 ± 0.8 μm), followed by Trios3® (22.3 ± 0.5 μm), DWIO® (27.8 ± 3.2 μm), Omnicam® (28.4 ± 4.5 μm), Emerald® (43.1 ± 11.5 μm). In the PP, CS 3600® had the best trueness (23 ± 1.1 μm), followed by Trios3® (28.5 ± 0.5 μm), Omnicam® (38.1 ± 8.8 μm), Emerald® (49.3 ± 5.5 μm), DWIO® (49.8 ± 5 μm). In the FA, CS 3600® had the best trueness (44.9 ± 8.9 μm), followed by Trios3® (46.3 ± 4.9 μm), Emerald® (66.3 ± 5.6 μm), Omnicam® (70.4 ± 11.9 μm), DWIO® (92.1 ± 24.1 μm). Significant differences were found between the IOSs; a significant difference in trueness was found between the contexts (SC vs. PP vs. FA). In the SC, CS 3600® had the best precision (11.3 ± 1.1 μm), followed by Trios3® (15.2 ± 0.8 μm), DWIO® (27.1 ± 10.7 μm), Omnicam® (30.6 ± 3.3 μm), Emerald® (32.8 ± 10.7 μm). In the PP, CS 3600® had the best precision (17 ± 2.3 μm), followed by Trios3® (21 ± 1.9 μm), Emerald® (29.9 ± 8.9 μm), DWIO® (34.8 ± 10.8 μm), Omnicam® (43.2 ± 9.4 μm). In the FA, Trios3® had the best precision (35.6 ± 3.4 μm), followed by CS 3600® (35.7 ± 4.3 μm), Emerald® (61.5 ± 18.1 μm), Omnicam® (89.3 ± 14 μm), DWIO® (111 ± 24.8 μm). Significant differences were found between the IOSs; a significant difference in precision was found between the contexts (SC vs. PP vs. FA). Conclusions The IOSs showed significant differences between them, both in trueness and in precision. The mathematical error increased in the transition from SC to PP up to FA, both in trueness than in precision.
PurposeThe aim of this study was to compare the trueness and precision of four intraoral scanners used in oral implantology.MethodsTwo stone models were prepared, representing a partially and a totally edentulous maxilla, with three and six implant analogues, respectively, and polyether-ether-ketone (PEEK) cylinders screwed on. The models were digitized with an industrial scanner (IScan D104I®) used as a reference, and with four intraoral scanners (Trios®; CS 3500®; Zfx Intrascan®; Planscan®). Five scans were taken for each model, using each different intraoral scanner. All datasets were loaded into reverse-engineering software (Geomagics 2012®), where intraoral scans were superimposed on the reference model, to evaluate general trueness, and superimposed on each other within groups, to evaluate general precision. General trueness and precision of any scanner were compared by model type, through an ANOVA model including scanner, model and their interaction. Finally, the distance and angles between simulated implants were measured in each group, and compared to those of the reference model, to evaluate local trueness.ResultsIn the partially edentulous maxilla, CS 3500® had the best general trueness (47.8 μm) and precision (40.8 μm), followed by Trios® (trueness 71.2 μm, precision 51.0 μm), Zfx Intrascan® (trueness 117.0 μm, precision 126.2 μm), and Planscan® (trueness 233.4 μm, precision 219.8 μm). With regard to general trueness, Trios® was significantly better than Planscan®, CS 3500® was significantly better than Zfx Intrascan® and Planscan®, and Zfx Intrascan® was significantly better than Planscan®; with regard to general precision, Trios® was significantly better than Zfx Intrascan® and Planscan®, CS 3500® was significantly better than Zfx Intrascan® and Planscan®, and Zfx Intrascan® was significantly better than Planscan®. In the totally edentulous maxilla, CS 3500® had the best performance in terms of general trueness (63.2 μm) and precision (55.2 μm), followed by Trios® (trueness 71.6 μm, precision 67.0 μm), Zfx Intrascan® (trueness 103.0 μm, precision 112.4 μm), and Planscan® (trueness 253.4 μm, precision 204.2 μm). With regard to general trueness, Trios® was significantly better than Planscan®, CS 3500® was significantly better than Zfx Intrascan® and Planscan®, and Zfx Intrascan® was significantly better than Planscan®; with regard to general precision, Trios® was significantly better than Zfx Intrascan® and Planscan®, CS 3500® was significantly better than Zfx Intrascan® and Planscan®, and Zfx Intrascan® was significantly better than Planscan®. Local trueness values confirmed these results.ConclusionsAlthough no differences in trueness and precision were found between partially and totally edentulous models, statistically significant differences were found between the different scanners. Further studies are required to confirm these results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.