Soilless cultivation represent a valid opportunity for the agricultural production sector, especially in areas characterized by severe soil degradation and limited water availability. Furthermore, this agronomic practice embodies a favorable response toward an environment-friendly agriculture and a promising tool in the vision of a general challenge in terms of food security. This review aims therefore at unraveling limitations and opportunities of hydroponic solutions used in soilless cropping systems focusing on the plant mineral nutrition process. In particular, this review provides information (1) on the processes and mechanisms occurring in the hydroponic solutions that ensure an adequate nutrient concentration and thus an optimal nutrient acquisition without leading to nutritional disorders influencing ultimately also crop quality (e.g., solubilization/precipitation of nutrients/elements in the hydroponic solution, substrate specificity in the nutrient uptake process, nutrient competition/antagonism and interactions among nutrients); (2) on new emerging technologies that might improve the management of soilless cropping systems such as the use of nanoparticles and beneficial microorganism like plant growth-promoting rhizobacteria (PGPRs); (3) on tools (multi-element sensors and interpretation algorithms based on machine learning logics to analyze such data) that might be exploited in a smart agriculture approach to monitor the availability of nutrients/elements in the hydroponic solution and to modify its composition in realtime . These aspects are discussed considering what has been recently demonstrated at the scientific level and applied in the industrial context.
Aquaponics (AP) is a semi-closed system of food production that combines aquaculture and hydroponics and represents a new agricultural system integrating producers and consumers. The aim of this study was to test the effect of stocking densities (APL, 2.5 kg m -3 ; APH, 4.6 kg m -3 ) on water quality, growth performance of the European Carp ( Cyprinus carpio L.), and yield of leafy vegetables (catalogna, lettuce, and Swiss Chard) in a low-technology AP pilot system compared to a hydroponic cultivation. The AP daily consumption of water due to evapotranspiration was not different among treatments with an average value of 8.2 L d -1 , equal to 1.37% of the total water content of the system. Dissolved oxygen was significantly (p < 0.05) different among treatments with the lowest median value recorded with the highest stocking density of fish (5.6 mg L -1 ) and the highest median value in the hydroponic control (8.7 mg L -1 ). Marketable yield of the vegetables was significantly different among treatments with the highest production in the hydroponic control for catalogna (1.2 kg m -2 ) and in the APL treatment for Swiss Chard (5.3 kg m -2 ). The yield of lettuce did not differ significantly between hydroponic control and APL system (4.0 kg m -2 on average). The lowest production of vegetables was obtained in the APH system. The final weight (515 g vs. 413 g for APL and APH, respectively), specific growth rate (0.79% d -1 vs. 0.68% d -1 ), and feed conversion (1.55 vs. 1.86) of European Carp decreased when stocking density increased, whereas total yield of biomass was higher in the APH system (4.45 kg m -3 vs. 6.88 kg m -3 ). A low mortality (3% on average) was observed in both AP treatments. Overall, the results showed that a low initial stocking density at 2.5 kg m -3 improved the production of European Carp and of leafy vegetables by maintaining a better water quality in the tested AP system.
Hydroponics is a method to grow crops without soil, and as such, these systems are added to aquaculture components to create aquaponics systems. Thus, together with the recirculating aquaculture system (RAS), hydroponic production forms a key part of the aqua-agricultural system of aquaponics. Many different existing hydroponic technologies can be applied when designing aquaponics systems. This depends on the environmental and financial circumstances, the type of crop that is cultivated and the available space. This chapter provides an overview of different hydroponic types, including substrates, nutrients and nutrient solutions, and disinfection methods of the recirculating nutrient solutions.
Aquaponics (AP), the integrated multi-trophic fish and plants production in quasi-closed recirculating system, is one of the newest sustainable food production systems. The hydroponic component of the AP directly influences water quality (in turn influencing fish growth and health), and water consumption (through evapotranspiration) of the entire system. In order to assess the role of the design and the management of the hydroponic component on the overall performance, and water consumption of the aquaponics, 122 papers published from 1979 to 2017 were reviewed. Although no unequivocal results were found, the nutrient film technique appears in several aspects less efficient than medium-based or floating raft hydroponics. The best system performance in terms of fish and plant growth, and the highest nutrient removal from water was achieved at water flow between 0.8 L min -1 and 8.0 L min -1 . Data on water consumption of aquaponics are scarce, and no correlation between the ratio of hydroponic unit surface/fish tank volume and the system water loss was found. However, daily water loss was positively correlated with the hydroponic surface/fish tank volume ratio if the same experimental conditions and/or systems were compared. The plant species grown in hydroponics influenced the daily water loss in aquaponics, whereas no effect was exerted by the water flow (reciprocating flood/drain cycle or constant flow) or type (medium-based, floating or nutrient film technique) of hydroponics.
The COVID-19 pandemic is causing many victims worldwide and has generated a serious economic crisis. Substantial changes have occurred in the food and ornamental production chains. The aim of the present review has been to summarize some of the main effects that the pandemic is having on horticulture and on the new habits of people. Infections and quarantine measures have prevented the regular flow of certain goods and of connected services. Cases of shortages and/or surpluses, a lack of the availability of labor, and a reduction in demand for some food products and flowers have occurred. New food production approaches have emerged and a reconnection between farmers and consumers has been spreading, thereby facilitating product distribution. Moreover, during the forced isolation, people have had to face periods of stress. The benefits that can be derived from leisure activities related to flowers and ornamental plants, and from access to nature and urban green spaces are increasingly being recognized as relevant. The seriousness of the pandemic will inevitably lead to lasting changes. Therefore, the vulnerability of the pre-COVID-19 distribution chains should be considered and a new food production chain should be drawn up, to increase the resilience of such systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.