The prehistoric (< 7 ka) Zaro eruption at Ischia island (Southern Italy) produced a lava complex overlaying a pyroclastic deposit. Although being of low energy, the Zaro eruption might have caused casualties among the neolithic population that inhabited that area of Ischia, and damages to their settlements. A similar eruption at Ischia with its present-day population would turn into a disaster. Therefore, understanding the magmatic processes that triggered the Zaro eruption would be important for volcanic hazard assessment and risk mitigation, so as to improve a knowledge that can be applied to other active volcanic areas worldwide. The main Zaro lava body is trachyte and hosts abundant mafic and felsic enclaves. Here all juvenile facies have been fully characterized from petrographic, geochemical and isotopic viewpoints. The whole dataset (major and trace element contents; Sr–Nd isotopic composition) leads to rule out a genetic link by fractional crystallization among the variable facies. Thus, we suggest that the Zaro mafic enclaves could represent a deep-origin mafic magma that mingled/mixed with the main trachytic one residing in the Ischia shallow magmatic system. The intrusion of such a mafic magma into a shallow reservoir filled by partly crystallized, evolved magma could have destabilized the magmatic system presumably acting as a rapid eruption trigger. The resulting processes of convection, mixing and rejuvenation have possibly played an important role in pre- and syn-eruptive phases also in several eruptions of different sizes in the Neapolitan area and elsewhere in the world.
The 56 ka Monte Epomeo Green Tuff (MEGT) resulted from the largest volume explosive eruption from Ischia island (south Italy). Its tephra is one of the main stratigraphic markers of the central Mediterranean area. Despite its importance, a detailed characterisation of the petrography and mineral chemistry of MEGT is lacking. To fill this gap, we present detailed petrographic description and electron microprobe mineral chemistry data on samples collected on-land from the MEGT. Juvenile clasts include pumice, scoria, and obsidian fragments with porphyritic/glomeroporphyritic, vitrophyric, and fragmental textures. The porphyritic index is 13–40 vol.%, and phenocryst phases include alkali-feldspar, plagioclase, clinopyroxene, ferrian phlogopite, and titano-magnetite, in order of decreasing abundance; accessory phases include sphene, hydroxy-fluor-apatite, and rare edenite. Plagioclase varies from predominant andesine to subordinate oligoclase, whereas alkali-feldspar is more variable from sanidine to anorthoclase; quasi-pure sanidine commonly occurs as either rim or recrystallisation overgrowth of large phenocrysts due to hydrothermal alteration. Secondary minerals include veins and patches of carbonate minerals, Fe-Mn oxyhydroxides, clay minerals, and zeolites. Clinopyroxene is ferroan diopside (En45–29Fs7–27) and never reaches Na-rich compositions. This feature allows the discrimination of MEGT from aegirine-bearing, distal tephra layers erroneously attributed to MEGT, with implications for the areal distribution of Ischia explosive deposits.
Somma-Vesuvius is one of the most dangerous active Italian volcanoes, due to the explosive character of its activity and because it is surrounded by an intensely urbanized area. For mitigating the volcanic risks, it is important to define how the Somma-Vesuvius magmatic system worked during the past activity and what processes took place. A continuous coring borehole drilled at Camaldoli della Torre, along the southern slopes of Somma-Vesuvius, allowed reconstructing its volcanic and magmatic history in a previous study. In this work, the wide range of chemical (Mg# = 92–69) and isotopic (87Sr/86Sr = 0.70781–0.70681) compositions, collected on single clinopyroxene crystals separated from selected lava flow units of the Camaldoli della Torre sequence, have been integrated with the already available bulk geochemical and Sr-isotopic data. The detected chemical and isotopic signatures and their variation through time allow us to better constrain the behavior of the volcano magmatic feeding system, highlighting that mixing and/or assimilation processes occurred before a significant change in the eruptive dynamics at Somma-Vesuvius during a period of polycyclic caldera formation, starting with the Pomici di Base Plinian eruption (ca. 22 ka).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.