This paper aims at analysing the synthesis of flavonoids, their import and export in plant cell compartments, as well as their involvement in the response to stress, with particular reference to grapevine (Vitis vinifera L.). A multidrug and toxic compound extrusion (MATE) as well as ABC transporters have been demonstrated in the tonoplast of grape berry, where they perform a flavonoid transport. The involvement of a glutathione S-transferase (GST) gene has also been inferred. Recently, a putative flavonoid carrier, similar to mammalian bilitranslocase (BTL), has been identified in both grape berry skin and pulp. In skin the pattern of BTL expression increases from véraison to harvest, while in the pulp its expression reaches the maximum at the early ripening stage. Moreover, the presence of BTL in vascular bundles suggests its participation in long distance transport of flavonoids. In addition, the presence of a vesicular trafficking in plants responsible for flavonoid transport is discussed. Finally, the involvement of flavonoids in the response to stress is described.
Flavonoids are a group of secondary metabolites widely distributed in plants that represent a huge portion of the soluble phenolics present in grapevine (Vitis vinifera L.). These compounds play different physiological roles and are often involved in protection against biotic and abiotic stress. Even if the flavonoid biosynthetic pathways have been largely characterized, the mechanisms of their transport and accumulation in cell wall and vacuole are still not completely understood. This review analyses the known mechanisms of flavonoid uptake and accumulation in grapevine, with reference to the transport models and membrane carrier proteins described in other plant species. The effect of different environmental factors on flavonoid biosynthesis and transporters is also discussed.
Programmed cell death (PCD) is a finely tuned process of multicellular organisms. In higher plants, PCD regulates many developmental processes and the response of host plants to incompatible pathogens (hypersensitive response). Four types of PCD have been described in plants, mainly associated to vacuole rupture, that is followed by the appearance of the typical PCD hallmarks (i.e. nuclear DNA fragmentation and cell shrinkage). However, in some cases vacuole collapse is preceded by an early alteration of other subcellular organelles, such as mitochondria. In particular, the central role played by mitochondria in PCD has been largely recognised in animal cells. This review deals with the involvement of mitochondria in the manifestation of plant PCD, in comparison to that described in animal PCD. The main hallmark, connecting animal and plant PCD via mitochondria, is represented by the release of cytochrome c and possibly other chemicals such as nucleases, which may be accomplished by different mechanisms, involving both swelling and non-swelling of the organelles
During maturation, Vitis vinifera berries accumulate a large amount of several anthocyanins in the epidermal tissue, whereas their precursors and intermediates are ubiquitously synthesized within the fruit. Up to date, several mechanisms of flavonoid transport at subcellular level have been hypothesized, but it is not possible to identify a general model applicable in every plant tissue and organ. Recently, a putative anthocyanin carrier, homologue to mammalian bilitranslocase (BTL) (TC 2.A.65.1.1), was found in Dianthus caryophyllus petal microsomes. In the present paper, an immunohistochemical and immunochemical analysis, using an antibody raised against a BTL epitope, evidences the expression and function of such a transporter in V. vinifera berries (cv. Merlot). Specific localisations of the putative carrier within berry tissues together with expression changes during different developmental stages are shown. Water stress induces an increase in protein expression in both skin and pulp samples. A bromosulfalein (BSP) uptake activity, inhibitable by the BTL antibody, is detected in berry mesocarp microsomes, with K (m) = 2.39 microM BSP and V (max) = 0.29 micromol BSP min(-1) mg(-1) protein. This BSP uptake is also competitively inhibited by quercetin (K (i) = 4 microM). A putative role for this carrier is discussed in relation to the membrane transport of secondary metabolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.