With the impressive growth of available data and the flexibility of network modelling, the problem of devising effective quantitative methods for the comparison of networks arises. Plenty of such methods have been designed to accomplish this task: most of them deal with undirected and unweighted networks only, but a few are capable of handling directed and/or weighted networks too, thus properly exploiting richer information. In this work, we contribute to the effort of comparing the different methods for comparing networks and providing a guide for the selection of an appropriate one. First, we review and classify a collection of network comparison methods, highlighting the criteria they are based on and their advantages and drawbacks. The set includes methods requiring known node-correspondence, such as DeltaCon and Cut Distance, as well as methods not requiring a priori known node-correspondence, such as alignment-based, graphlet-based, and spectral methods, and the recently proposed Portrait Divergence and NetLSD. We test the above methods on synthetic networks and we assess their usability and the meaningfulness of the results they provide. Finally, we apply the methods to two real-world datasets, the European Air Transportation Network and the FAO Trade Network, in order to discuss the results that can be drawn from this type of analysis.
The bifurcations of the periodic solutions of SEIR and SIR epidemic models with sinusoidally varying contact rate are investigated. The analysis is carried out with respect to two parameters: the mean value and the degree of seasonality of the contact rate. The corresponding portraits in the two-parameter space are obtained by means of a numerical continuation method. Codimension two bifurcations (degenerate flips and cusps) are detected, and multiple stable modes of behavior are identified in various regions of the parameter space. Finally, it is shown how the parametric portrait of the SEIR model tends to that of the SIR model when the latent period tends to zero.
Identifying communities (or clusters), namely groups of nodes with comparatively strong internal connectivity, is a fundamental task for deeply understanding the structure and function of a network. Yet, there is a lack of formal criteria for defining communities and for testing their significance. We propose a sharp definition that is based on a quality threshold. By means of a lumped Markov chain model of a random walker, a quality measure called “persistence probability” is associated to a cluster, which is then defined as an “-community” if such a probability is not smaller than . Consistently, a partition composed of -communities is an “-partition.” These definitions turn out to be very effective for finding and testing communities. If a set of candidate partitions is available, setting the desired -level allows one to immediately select the -partition with the finest decomposition. Simultaneously, the persistence probabilities quantify the quality of each single community. Given its ability in individually assessing each single cluster, this approach can also disclose single well-defined communities even in networks that overall do not possess a definite clusterized structure.
In recent years, malicious information had an explosive growth in social media, with serious social and political backlashes. Recent important studies, featuring large-scale analyses, have produced deeper knowledge about this phenomenon, showing that disinformation spreads faster, deeper and more broadly than the truth on social media, where bots and echo chambers play an important role in diffusion networks. Following these directions, we explore the possibility of classifying news articles circulating on social media based exclusively on a topological analysis of their diffusion networks. To this aim we collected a large dataset of diffusion networks on Twitter pertaining to news articles published on two distinct classes of sources, namely outlets that convey mainstream, reliable and objective information and those that fabricate and disseminate various kinds of disinformation stories. We carried out an extensive comparison of these networks using several alignmentfree approaches including basic network properties, centrality measures distributions, and network distances. We accordingly evaluated to what extent these network features allow to discriminate between the networks associated to the aforementioned news domains. Our results highlight that the communities of users spreading mainstream rather than disinformation news tend to shape diffusion networks with subtle yet systematic differences. This opens the way to promptly and correctly identifying disinformation on social media by solely inspecting the resulting diffusion networks.
The problem of link prediction has recently received increasing attention from scholars in network science. In social network analysis, one of its aims is to recover missing links, namely connections among actors which are likely to exist but have not been reported because data are incomplete or subject to various types of uncertainty. In the field of criminal investigations, problems of incomplete information are encountered almost by definition, given the obvious anti-detection strategies set up by criminals and the limited investigative resources. In this paper, we work on a specific dataset obtained from a real investigation, and we propose a strategy to identify missing links in a criminal network on the basis of the topological analysis of the links classified as marginal, i.e. removed during the investigation procedure. The main assumption is that missing links should have opposite features with respect to marginal ones. Measures of node similarity turn out to provide the best characterization in this sense. The inspection of the judicial source documents confirms that the predicted links, in most instances, do relate actors with large likelihood of co-participation in illicit activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.