Before a lead compound goes through a clinical trial, preclinical studies utilize two‐dimensional (2D) in vitro models and animal models to study the pharmacodynamics and pharmacokinetics of that lead compound. However, these current preclinical studies may not accurately represent the efficacy and safety of a lead compound in humans, as there has been a high failure rate of drugs that enter clinical trials. All of these failures and the associated costs demonstrate a need for more representative models of human organ systems for screening in the preclinical phase of drug development. In this study, we review the recent advances in in vitro modeling including three‐dimensional (3D) organoids, 3D microfabrication, and 3D bioprinting for various organs including the heart, kidney, lung, gastrointestinal tract (intestine–gut–stomach), liver, placenta, adipose, retina, bone, and brain as well as multiorgan models. The availability of organ‐on‐chip models provides a wealth of opportunities to understand the pathogenesis of human diseases and provide a potentially better model to screen a drug, as these models utilize a dynamic 3D environment similar to the human body. Although there are limitations of organ‐on‐chip models, the emergence of new technologies have refined their capability for translational research as well as precision medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.