Background In patients with Multiple Sclerosis (pwMS) disease-modifying therapies (DMTs) affects immune response to antigens. Therefore, post-vaccination serological assessments are needed to evaluate the effect of the vaccine on SARS-CoV-2 antibody response. Methods We designed a prospective multicenter cohort study enrolling pwMS who were scheduled for SARS-Cov-2 vaccination with mRNA vaccines (BNT162b2, Pfizer/BioNTech,Inc or mRNA-1273, Moderna Tx,Inc). A blood collection before the first vaccine dose and 4 weeks after the second dose was planned, with a centralized serological assessment (electrochemiluminescence immunoassay, ECLIA, Roche-Diagnostics). The log-transform of the antibody levels was analyzed by multivariable linear regression. Findings 780 pwMS (76% BNT162b2 and 24% mRNA-1273) had pre- and 4-week post-vaccination blood assessments. 87 (11·2%) were untreated, 154 (19·7%) on ocrelizumab, 25 (3·2%) on rituximab, 85 (10·9%) on fingolimod, 25 (3·2%) on cladribine and 404 (51·7%) on other DMTs. 677 patients (86·8%) had detectable post-vaccination SARS-CoV-2 antibodies. At multivariable analysis, the antibody levels of patients on ocrelizumab (201-fold decrease (95%CI=128–317), p < 0·001), fingolimod (26-fold decrease (95%CI=16–42), p < 0·001) and rituximab (20-fold decrease (95%CI=10–43), p < 0·001) were significantly reduced as compared to untreated patients. Vaccination with mRNA-1273 resulted in a systematically 3·25-fold higher antibody level (95%CI=2·46–4·27) than with the BNT162b2 vaccine ( p < 0·001). The antibody levels on anti-CD20 therapies correlated to the time since last infusion, and rituximab had longer intervals (mean=386 days) than ocrelizumab patients (mean=129 days). Interpretation In pwMS, anti-CD20 treatment and fingolimod led to a reduced humoral response to mRNA-based SARS-CoV-2 vaccines. As mRNA-1273 elicits 3·25-higher antibody levels than BNT162b2, this vaccine may be preferentially considered for patients under anti-CD20 treatment or fingolimod. Combining our data with those on the cellular immune response to vaccines, and including clinical follow-up, will contribute to better define the most appropriate SARS-CoV-2 vaccine strategies in the context of DMTs and MS. Funding FISM[2021/Special-Multi/001]; Italian Ministry of Health‘Progetto Z844A 5 × 1000′.
Background and Purpose-Available data indicate a decline in fine finger movements with aging, suggesting changes in central motor processes. Thus far no functional neuroimaging study has assessed the effect of age on activation patterns during finger movement. Methods-We used high-resolution perfusion positron emission tomography to study 2 groups of 7 healthy right-handed subjects each: a young group (mean age, 24 years) and an old group (mean age, 60 years). The task was a thumb-to-index tapping, auditory-cued at 1.26 Hz with a metronome, with either the right or the left hand. The control condition was a resting state with the metronome on. Results-Significant differences between old and young subjects were found, suggesting significant overactivation in older subjects affecting the superior frontal cortex (premotor-prefrontal junction) ipsilateral to the moving fingers, as if the execution of this apparently simple motor task was judged more complex by the aged brain. Similar findings in previous perceptual and cognitive paradigms have been interpreted as a compensation process for the neurobiological changes of aging. Analysis of the control condition data in our sample showed, however, that this prefrontal overactivation in the old group was due at least in part to higher resting perfusion in anterior brain areas in the young subjects. Conclusions-The changes in brain function observed in this study may underlie the subtle decline in fine motor functions known to occur with normal aging. Our findings emphasize the importance of using an age-matched control group in functional imaging studies of motor recovery after stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.